Lecture 10: Algorithms for
CFLs

CSCI 81
Spring, 2012

Kim Bruce

Iswe L(G)?

e Convert G to CNF &

e Ifw=¢g,seeif S — ¢isin rules.

* Otherwise look at all derivations of length
<2 lwl-1. If not there, then not in language.
* How eflicient? Let Iwl=n
e |RP2r derivations, each of length 2n-1. Thus O(n 2»)

» With work (see later), can find O(n3) algorithm.
e Want O()!!

Algorithms for CFLs

* Given a cfg, G, and w in Z*, is w € L(G)?
* Given a cfg, G, is L(G) = &?

* Given a cfg, G, is L(G) infinite?

e All are decidable!

Thinning cfg
e Say non-terminal V is non-productive if there is
no string w € 2* s.t. V="*w.
e Algorithm: Set G’ =G
e Mark every terminal in G’ as productive

¢ Until entire pass through R w/no marking

e For each X — o in R: If every symbol in o marked as productive,
but X not yet marked productive, then mark it as productive

¢ Remove from V¢ all non-productive symbols

¢ Remove from Re all rules w/non-productive symbols on
left or right side.



Algorithm for Emptiness

* Run algorithm to mark non-productive
symbols. If S non-productive then L(G) = &.

Algorithm for Finiteness

* Let G by cfg. Use proof of pumping lemma.
e Let G’ be equivalent grammar in CNF.
e Let n = #non-terminals. Let k = 20+,
e If there is aw € L(G) s.t. wl > k then can pump, so o

e Claim if L(G) « then exist w € L(G) s.t. k< Iwl < 2k.
e Spose fails. Then oo, so let w’ € L(G) be shortest s.t. wl > 2k.
e Pump with i = o to get shorter. But lvxyl < k & thus lvyl < k.

e Thus uxy € L(G), luxyl < Iw, but luxyl > k. Contradiction to
assumption w’ shortest!

e Thus L(G) is = iff exists w € L(Q) s.t. k < Iwl < 2k

Parsing CFLs

e Created non-deterministic PDA.
¢ Backtracking computation hard to get right.

¢ Having to backtrack on input painful
e More efficient dynamic programming

e Later see deterministic language better

CYK Algorithm

* Cocke-Younger-Kasami mid-60’s

e Uses dynamic programming to save partial
results rather than recalculate each time.

e O(m)

e Compare recursive fibonacci w/ iterative
¢ Bottom-up rather than top-down

e Record in advance rather than memoization



CYK

* Convert cfg G to G’ in Chomsky Normal Form
® Let w = wi...wy be string to be parsed. Define
Ot(i,j) to be {B| B =* Wi...Wj}
e SoxEL(G) iff S € a(1,n)

e Keyidea: What non-terminals give substrings?

e Recursive definition:
e a(i,i)={C|C—wy}
e a(i,k) ={CIC — AB & A € a(i,)AB € a(j+1,k) for some j}

Using CYK

* Let G be grammar for balanced parens in CNF:

e S—S§,S —-LT, S—=LR
e T— SR
° L—>(’ R—))

e Parse () (())
e Generally most entries are empty

e What if two entries in same slot?

¢ Better to store rule rather than just left-hand side.

Fill in Table

a(I,IL oc(l}z)\ a(hgk SN a(I,rNIL

a(1,n)

ENEE alrmc)

\océz,n)

M a(3,n-1)

\a(3,n)

\\
EG‘RLQ-I)

%I,n)

~u(n,n)

Each entry computed from entries in same row & column:
a(1,3) from a(1,0) & a(2,3), a1,2) & a3,3), etc.

Slide across row and down column.

Why O(n3)?



