Lecture io: Algorithms for CFL's

CSCI 8i

Spring, 2012
Kim Bruce

Algorithms for CFL's

- Given a cfg, G, and w in Σ^{*}, is w $\in L(\mathrm{G})$?
- Given a cfg, G, is $L(\mathrm{G})=\varnothing$?
- Given a cfg, G , is $\mathrm{L}(\mathrm{G})$ infinite?
- All are decidable!

Is $w \in L(G)$?

- Convert G to CNF G'
- If $w=\varepsilon$, see if $S \rightarrow \varepsilon$ is in rules.
- Otherwise look at all derivations of length $\leq 2 \mid \mathrm{wl}-\mathrm{I}$. If not there, then not in language.
- How efficient? Let $|\mathrm{w}|=\mathrm{n}$
- $|R|^{2 n-1}$ derivations, each of length $2 n-\mathrm{I}$. Thus $\mathrm{O}\left(\mathrm{n} 2^{\mathrm{n}}\right)$
- With work (see later), can find $\mathrm{O}\left(\mathrm{n}^{3}\right)$ algorithm.
- Want $O(n)!!$

Thinning cfg

- Say non-terminal V is non-productive if there is no string $\mathrm{w} \in \Sigma^{*}$ s.t. $V \Rightarrow^{*}$ w.
- Algorithm: Set G' = G
- Mark every terminal in G' as productive
- Until entire pass through R w/no marking
- For each $X \rightarrow \alpha$ in R: If every symbol in α marked as productive, but X not yet marked productive, then mark it as productive
- Remove from $\mathrm{V}_{\mathrm{G}^{\prime}}$ all non-productive symbols
- Remove from $\mathrm{R}_{G^{\prime}}$ all rules w/non-productive symbols on left or right side.

Algorithm for Emptiness

- Run algorithm to mark non-productive symbols. If S non-productive then $L(G)=\varnothing$.

Parsing CFL's

- Created non-deterministic PDA.
- Backtracking computation hard to get right.
- Having to backtrack on input painful
- More efficient dynamic programming
- Later see deterministic language better

Algorithm for Finiteness

- Let G by cfg. Use proof of pumping lemma.
- Let G' be equivalent grammar in CNF.
- Let $\mathrm{n}=$ \#non-terminals. Let $\mathrm{k}=2^{\mathrm{n}+\mathrm{I}}$.
- If there is a $w \in L(G)$ s.t. $|w|>k$ then can pump, so ∞
- Claim if $L(G) \infty$ then exist $w \in L(G)$ s.t. $k<|w| \leq 2 k$.
- Spose fails. Then ∞, so let $w^{\prime} \in L(G)$ be shortest s.t. $\left|w^{\prime}\right|>2 k$.
- Pump with $\mathrm{i}=\mathrm{o}$ to get shorter. But $|\mathrm{vxy}|<\mathrm{k} \&$ thus $|\mathrm{vy}|<\mathrm{k}$.
- Thus uxy $\in L(G),|u x y|<\left|w^{\prime}\right|$, but $|u x y|>k$. Contradiction to assumption w' shortest!
- Thus $\mathrm{L}(\mathrm{G})$ is ∞ iff exists $\mathrm{w} \in \mathrm{L}(\mathrm{G})$ s.t. $\mathrm{k}<|\mathrm{w}| \leq 2 \mathrm{k}$

CYK Algorithm

- Cocke-Younger-Kasami mid-6o's
- Uses dynamic programming to save partial results rather than recalculate each time.
- $\mathrm{O}(\mathrm{n} 3)$
- Compare recursive fibonacci w/ iterative
- Bottom-up rather than top-down
- Record in advance rather than memoization

CYK

- Convert cfg G to G' in Chomsky Normal Form
- Let $\mathrm{w}^{2}=\mathrm{w}_{\mathrm{I}} \ldots \mathrm{w}_{\mathrm{n}}$ be string to be parsed. Define $\alpha(\mathrm{i}, \mathrm{j})$ to be $\left\{\mathrm{B} \mid \mathrm{B} \Rightarrow^{*} \mathrm{w}_{\mathrm{i}} \ldots \mathrm{w}_{\mathrm{j}}\right\}$
- So $\mathrm{x} \in L(\mathrm{G})$ iff $\mathrm{S} \in \alpha(\mathrm{r}, \mathrm{n})$
- Key idea: What non-terminals give substrings?
- Recursive definition:
- $\alpha(\mathrm{i}, \mathrm{i})=\left\{\mathrm{C} \mid \mathrm{C} \rightarrow \mathrm{w}_{\mathrm{i}}\right\}$
- $\alpha(\mathrm{i}, \mathrm{k})=\{\mathrm{C} \mid \mathrm{C} \rightarrow \mathrm{AB} \& \mathrm{~A} \in \alpha(\mathrm{i}, \mathrm{j}) \wedge \mathrm{B} \in \alpha(\mathrm{j}+\mathrm{r}, \mathrm{k})$ for some j$\}$

Fill in Table

α (1,)	$\alpha(1,2)$	$\alpha(r, 3)$...	$\alpha(\mathrm{t}, \mathrm{nc-})$	$\alpha(\mathrm{r}, \mathrm{n})$
	at $(2,2)$	$a(2,3)$..	$\alpha(2, \mathrm{~B}-\mathrm{I})$	$a(2, n)$
		an (3,3)	\cdots	$\alpha(3, \mathrm{n}-\mathrm{I})$	$\alpha(3, n)$
				\cdots	\ldots
				$a(n-1, n-1)$	$\alpha(\mathrm{n}-1, \mathrm{n})$
					$a(\mathrm{n}, \mathrm{n})$

Each entry computed from entries in same row \& column:
$\alpha(\mathrm{I}, 3)$ from $\alpha(\mathrm{I}, \mathrm{I}) \& \alpha(2,3), \alpha(\mathrm{I}, 2) \& \alpha(3,3)$, etc.
Slide across row and down column.
Why O(n3)?

Using CYK

- Let G be grammar for balanced parens in CNF:
- $\mathrm{S} \rightarrow \mathrm{SS}, \mathrm{S} \rightarrow \mathrm{LT}, \mathrm{S} \rightarrow \mathrm{LR}$
- $\mathrm{T} \rightarrow \mathrm{SR}$
- $\mathrm{L} \rightarrow(, \mathrm{R} \rightarrow)$
- Parse () (())
- Generally most entries are empty
- What if two entries in same slot?
- Better to store rule rather than just left-hand side.

