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Algorithms for CFL’s

• Given a cfg, G, and w in Σ*, is w ∈ L(G)?

• Given a cfg, G, is L(G) = ∅?

• Given a cfg, G, is L(G) infinite?

• All are decidable!

Is w ∈ L(G)?

• Convert G to CNF G’

• If w = ε, see if S → ε is in rules.

• Otherwise look at all derivations of length 
≤ 2 |w| -1.  If not there, then not in language.

• How efficient?  Let |w| = n

• |R|2n-1 derivations, each of length 2n-1.  Thus O(n 2n)

• With work (see later), can find O(n3) algorithm.

• Want O(n)!!

Thinning cfg
• Say non-terminal V is non-productive if there is 

no string w ∈ Σ* s.t. V ⇒* w.

• Algorithm:  Set G’ = G

• Mark every terminal in G’ as productive

• Until entire pass through R w/no marking

• For each X → α in R:  If every symbol in α marked as productive, 
but X not yet marked productive, then mark it as productive

• Remove from VG’ all non-productive symbols

• Remove from RG’ all rules w/non-productive symbols on 
left or right side.



Algorithm for Emptiness

• Run algorithm to mark non-productive 
symbols.  If S non-productive then L(G) = ∅.

Algorithm for Finiteness
• Let G by cfg.  Use proof of pumping lemma.

• Let G’ be equivalent grammar in CNF.

• Let n = #non-terminals.  Let k = 2n+1.

• If there is a w ∈ L(G) s.t. |w| > k then can pump, so ∞

• Claim if L(G) ∞ then exist w ∈ L(G) s.t. k< |w| ≤ 2k.

•  Spose fails.  Then ∞, so let w’ ∈ L(G) be shortest s.t. |w’| > 2k.

• Pump with i = 0 to get shorter.  But |vxy| < k & thus |vy| < k.

• Thus uxy ∈ L(G), |uxy| < |w’|, but |uxy| > k.  Contradiction to 
assumption w’ shortest!

• Thus L(G) is ∞ iff exists w ∈ L(G) s.t. k < |w| ≤ 2k

Parsing CFL’s

• Created non-deterministic PDA.

• Backtracking computation hard to get right.

• Having to backtrack on input painful

• More efficient dynamic programming

• Later see deterministic language better

CYK Algorithm

• Cocke–Younger–Kasami mid-60’s

• Uses dynamic programming to save partial 
results rather than recalculate each time.

• O(n3)

• Compare recursive fibonacci w/ iterative

• Bottom-up rather than top-down

• Record in advance rather than memoization



CYK

• Convert cfg G to G’ in Chomsky Normal Form

• Let w = w1...wn be string to be parsed.  Define 
α(i,j) to be {B | B ⇒* wi...wj}

• So x ∈ L(G) iff S ∈ α(1,n)

• Key idea:  What non-terminals give substrings?

• Recursive definition:

• α(i,i) = {C | C→wi}

• α(i,k) = {C | C → AB & A ∈ α(i,j)∧B ∈ α(j+1,k) for some j}

Fill in Table
α(1,1) α(1,2) α(1,3) ... α(1,n-1) α(1,n)

α(2,2) α(2,3) ... α(2,n-1) α(2,n)

α(3,3) ... α(3,n-1) α(3,n)

... ... ...

α(n-1,n-1) α(n-1,n)

α(n,n)

Each entry computed from entries in same row & column:
α(1,3) from α(1,1) & α(2,3), α(1,2) & α(3,3), etc.

Slide across row and down column.
Why O(n3)?

Using CYK
• Let G be grammar for balanced parens in CNF:

• S → SS, S →LT, S→LR

• T → SR

• L → (,   R → )

• Parse ( ) ( ( ) )

• Generally most entries are empty

• What if two entries in same slot?

• Better to store rule rather than just left-hand side.


