Lecture 10: Algorithms for CFL's

CSCI 81 Spring, 2012

Kim Bruce

Algorithms for CFL's

- Given a cfg, G, and w in Σ^* , is w $\in L(G)$?
- Given a cfg, G, is $L(G) = \emptyset$?
- Given a cfg, G, is L(G) infinite?
- All are decidable!

Is $w \in L(G)$?

- Convert G to CNF G'
- If w = ε , see if S $\rightarrow \varepsilon$ is in rules.
- Otherwise look at all derivations of length ≤ 2 |w| -1. If not there, then not in language.
- How efficient? Let |w| = n
 - $|R|^{2n-1}$ derivations, each of length 2n-1. Thus O(n 2ⁿ)
 - With work (see later), can find $O(n^3)$ algorithm.
 - Want O(n)!!

Thinning cfg

- Say non-terminal V is non-productive if there is no string w ∈ Σ* s.t. V ⇒* w.
- Algorithm: Set G' = G
 - Mark every terminal in G' as productive
 - Until entire pass through R w/no marking
 - For each $X \rightarrow \alpha$ in R: If every symbol in α marked as productive, but X not yet marked productive, then mark it as productive
 - Remove from $V_{G'}$ all non-productive symbols
 - Remove from $R_{G'}$ all rules w/non-productive symbols on left or right side.

Algorithm for Emptiness

 Run algorithm to mark non-productive symbols. If S non-productive then L(G) = Ø.

Algorithm for Finiteness

- Let G by cfg. Use proof of pumping lemma.
 - Let G' be equivalent grammar in CNF.
 - Let n = #non-terminals. Let $k = 2^{n+1}$.
 - If there is a $w \in L(G)$ s.t. |w| > k then can pump, so ∞
 - Claim if $L(G) \propto$ then exist $w \in L(G)$ s.t. $k < |w| \le 2k$.
 - Spose fails. Then ∞ , so let $w' \in L(G)$ be shortest s.t. |w'| > 2k.
 - Pump with i = 0 to get shorter. But |vxy| < k & thus |vy| < k.
 - Thus uxy ∈ L(G), luxyl < lw'l, but luxyl > k. Contradiction to assumption w' shortest!
 - Thus L(G) is ∞ iff exists $w \in L(G)$ s.t. $k < |w| \le 2k$

Parsing CFL's

- Created non-deterministic PDA.
 - Backtracking computation hard to get right.
 - Having to backtrack on input painful
- More efficient dynamic programming
- Later see deterministic language better

CYK Algorithm

- Cocke-Younger-Kasami mid-60's
- Uses dynamic programming to save partial results rather than recalculate each time.
 - O(n³)
- Compare recursive fibonacci w/ iterative
 - Bottom-up rather than top-down
 - Record in advance rather than memoization

СҮК

- Convert cfg G to G' in Chomsky Normal Form
- Let $w = w_i...w_n$ be string to be parsed. Define $\alpha(i,j)$ to be $\{B \mid B \Rightarrow^* w_i...w_j\}$
 - So $x \in L(G)$ iff $S \in \alpha(r,n)$
 - Key idea: What non-terminals give substrings?
- Recursive definition:
 - $\alpha(i,i) = \{C \mid C \rightarrow w_i\}$
 - $\alpha(i,k) = \{C \mid C \rightarrow AB & A \in \alpha(i,j) \land B \in \alpha(j+i,k) \text{ for some } j\}$

Fill in Table

Each entry computed from entries in same row & column: $\alpha(1,3)$ from $\alpha(1,1)$ & $\alpha(2,3)$, $\alpha(1,2)$ & $\alpha(3,3)$, etc. Slide across row and down column. Why O(n³)?

Using CYK

- Let G be grammar for balanced parens in CNF:
 - $S \rightarrow SS, S \rightarrow LT, S \rightarrow LR$
 - $T \rightarrow SR$
 - $L \rightarrow (, R \rightarrow)$
- Parse ()(())
- Generally most entries are empty
- What if two entries in same slot?
 - Better to store rule rather than just left-hand side.