
Testing with JUnit
Wednesday March 6, 2013

Lab 6
CSC 062: Spring, 2013

JUnit is a modern testing tool designed by Eric Gamma and Kent Beck (promoter of “Extreme Pro-

gramming”) that is available from www.junit.org. JUnit is a tool that reflects the philosophy of test-driven

development. Test-driven development involves writing “unit” tests first, and only then writing the actual

code. Unit testing is easier and more effective (at least in the early stages of programming) than writing

tests of the entire project. The goal is that you never integrate a class into a project until you are convinced

that it works properly. Moreover, because we often modify classes, we keep the unit test so that we can

rerun them after any changes are made. While anyone can do such testing, JUnit is a tool that helps you

set up the tests and then runs them all automatically for you – a huge advantage!

As usual, working in pairs is fine. Make sure you haven’t worked with the same person more than once.

Creating Test Cases in JUnit

We will only provide a brief overview here. You can learn more on your own. JUnit is integrated into

Eclipse, so it is especially easy to use it when using Eclipse. Later you should read the tutorials that are

available from the course web page for details. Because we will be using JUnit from within Eclipse, be sure

to look at the JUnit documentation for Eclipse.

Here are general directions to create a test case for an existing project. Read them through quickly to get

a sense as to what is happening. We’ll use these instructions for an in lab demo that creates a unit test for

your GridTest program from a couple of weeks ago. Then you will use them for the actual lab assignment,

which will ask you to add unit tests to your calculator program of this past week.

1. Create a class extending junit.framework.TestCase. The best way to do this is go select New and

then JUnit Test Case.

(a) When the New JUnit Test Case window pops up, click on the choice button on top to select New

JUnit 4 test.

(b) Type in the name of your test class in the name field. If the class you will be testing already

exists, enter it in the Class under Test field (you can also use the browse button to find it if

you’d like). Click on the Next button.

(c) You will get a window showing the methods of the class you will be testing (if you selected one).

Click in the checkboxes to have method headers automatically generated for each selected method.

Click on Finish and your class will be displayed. (The system may inform you that JUnit 4 is

not on the build path. If so, select “Add JUnit 4 library to the build path” and select OK.)

2. The generated class will import org.junit.Assert.* and org.junit.Test. Also all of the methods

that have stubs created will have an annotation @Test. The names of all of these methods begin

with test, take no parameters and return void. They all start with a default body fail("Not yet

implemented").

If you wish to add your own test methods make sure that they follow the same template. You may need

some instance variables to be declared and initialized to run your tests. Declare the instance variables

as usual, and initialize them in a method with header public void setUp() (which may have been

added by the wizard). That method should start with the annotation @Before. (If the compiler objects

to that annotation, add import org.junit.Before;.) If you need to put away resources (e.g., close

files) after a test, add a method with no parameters (typically called cleanup) that has an @After tag

before its declaration.

3. Write the body for each method. The tests should use methods like assertEquals(a,b) and

assertTrue(msg,cond). The setUp method will be run before each test.

1



Running JUnit

To run a test case:

1. Select the test class in the Package Explorer pane on the left side of the Eclipse window.

2. Pull down the menu to the right of the triangle denoting program execution and select run as ...

and then select JUnit test.

A JUnit panel should replace the PackageExplorer on the leftmost panel in the window. If the bar across

the top is green, then all tests have succeeded. If one or more tests have failed then the bar will be red and

each failed test will be listed. Select each to find out why the test failed.

The JUnit panel on the left side of the screen can be replaced by the usual Package Explorer panel if

you just click on that tab on the top of the panel.

Continue to refine and add to your tests (just add a method whose name starts with test and code

until you are convinced that all of the methods in your class work correctly. At that point you are ready to

integrate your class with the other classes in your project and test them. Again, you can write test suites

for these using JUnit.

The recommended way of working with JUnit is always to write your tests before writing the code that

uses them. Thus when you start, all of your tests should fail. Your goal is to fix the failed tests one at a

time until you get a green bar. If you had a good test suite then your class should be correct. (Though if

you had a lousy test suit, you may still have errors!)

Today’s Assignment

In today’s lab, you will create a test class for the State class from your Calculator project. I have

given you a partially written test class. You should include the bodies of methods that test multiplication,

subtraction, division, and the clear method. Because you already have a project with your calculator, you

need only add the file from /common/cs/cs062/labs/lab6 to your calculator project folder’s calc package

and refresh eclipse.

If you are working with someone else, you may use either of your programs.

import static org.junit.Assert.*;

import javax.swing.JTextField;

import org.junit.Test;

import org.junit.Before;

/*

* @author Kim Bruce

* @version Created on Apr 4, 2004

* revised 3/2013 -- kpc

* Test class for State class in Calculator

*/

public class StateTest {

private JTextField display; // dummy display for testing

private State st; // sample state object

// set up state with 2 on top of stack and 9 below it.

@Before

public void setUp(){

display = new JLabel("0");

st = new State(display);

st.addDigit(9);

2



st.enter();

st.addDigit(2);

st.enter();

}

// check that if 2 on stack and add digits 7, 5, and then

// hit enter that display will show "75"

@Test

public void testAddDigit() {

assertEquals("2",display.getText());

st.addDigit(7);

assertEquals("7",display.getText());

st.addDigit(5);

assertEquals("75",display.getText());

st.enter();

assertEquals("75",display.getText());

}

// check that if stack has 4, 2, and 9, then executing plus twice

// gives "6" and then "15".

@Test

public void testPlus() {

st.addDigit(4);

st.enter();

st.doOp(’+’);

assertEquals("6",display.getText());

st.doOp(’+’);

assertEquals("15",display.getText());

}

@Test

public void testMult() {

fail("Not yet implemented");

}

@Test

public void testMinus() {

}

fail("Not yet implemented");

@Test

public void testDiv() {

fail("Not yet implemented");

}

@Test

public void testClear() {

fail("Not yet implemented");

}

// check if 2 and 9 on stack that if pop once get "9" in display

3



// and if pop again have "0" on stack and remains if pop once more.

@Test

public void testPop() {

st.pop();

assertEquals("9",display.getText());

st.pop();

assertEquals("0",display.getText());

st.pop();

assertEquals("0",display.getText());

}

// Method exchange should swap top two values so after

// exchange have 9 on top with 2 underneath.

@Test

public void testExchange() {

st.exchange();

assertEquals("9",display.getText());

st.pop();

assertEquals("2",display.getText());

}

}

TestSuites

You can create a test suite by selecting New->Other ... Select JUnit as before, but create a TestSuite

this time instead of a TestCase. This will create a new class AllTests that will create a new TestSuite for

every class that starts with ”Test”. When executed, it will run every test for every class.

Turning in your work

Please export your entire Java project (just as you do for your weekly assignments), and rename the folder

to “Lastname-Lab6” where Lastname is replaced by your last name, or “Lastname1 -Lastname2 -Lab6” if you

worked with a partner. Place the folder in the cs062 dropbox when you are finished.

4


