
Graph Algorithms
Due Wednesday May 6, 2015

Objectives

For this assignment, you will:

• Implement multiple graph algorithms

• Gain more practice using the C++ STL

• Gain more practice using iterators in C++

• Analyze a real data set using graph algorithms

Description

You are allowed to work in pairs for this final assignment! In this assignment, you will be implementing graph
algorithms. For the first part, you will create a collection of general graph functions in C++. Your func-
tions will apply to any graph, provided it is presented in the correct form. Then, in the second part you will
translate movie rating data from Netflix into graphs and analyze the graphs with your implemented functions.

For this assignment you should make liberal use of the STL structures, like list, map, set, and vector.
In contrast to the previous assignment, all the pointers should be hidden inside the STL structures. It is
unlikely that your code will contain any pointers. You will use several iterators, however.

Before getting started, read through the whole document, so you understand what resources are available
and what you are required to do.

Classes

Graph algorithms

You are to write three graph functions corresponding to three graph problems discussed in class: shortest
paths, connected components and cycles.

Graphs are specified using an adjacency “map”: map<int,list<int> >. Each vertex is an integer. The
map takes a vertex (represented as an integer) and returns a list of its adjacent vertices. The vertices need
not be consecutive integers nor in a particular range, for example the vertices could be {10, 100, 15}.

The three functions you need to implement can be found in the header file graph_operations.h, which can
be found in /common/cs/cs062/assignments/assignment12:

list<list<int> >

grop_connected_components(const map<int, list<int> > &adjMap);

list<int>

grop_one_cycle(const map<int, list<int> > &adjMap);

map<int, list<int> >

grop_shortest_paths(int source,

const map<int, list<int> > &adjMap);

1

graph_operations.h
/common/cs/cs062/assignments/assignment12


Notice that each function name begins with grop , short for “graph operation.” Such prefixing is a common
approach in C++ to avoid naming conflicts and to identify all the functions that appear in a particular
compilation unit.

Each function takes an adjacency map as an argument. The map is passed by const reference to avoid
copying and to prevent the map from being corrupted.

Implement these three functions in a file graph operations.cpp. You may write auxiliary functions in the
same file, but do not change the header file.

grop connected components uses depth-first search to return the list of connected components. Each com-
ponent is itself a list. The order of the components, and the order of vertices within a component, is
not specified.

grop one cycle uses depth-first search to return a cycle, if there is one. If the graph is acyclic, the result
is an empty list. Otherwise, the list specifies a cycle as a list of three or more vertices that starts and
ends with the same vertex. If multiple cycles exist than any cycle may be returned.

grop shortest paths uses Dijkstra’s algorithm and returns a map of shortest paths. Notice that in our case
the edge weights are intrinsically 1, but we’d still like you to implement it using Dijkstra’s algorithm.
Suppose that sp is the map returned. For each vertex v which is reachable from source, sp[v] is the
list of vertices on a path from v back to source. A path in our case consists of a list of vertices and
should include both v and source. The path from source to source is just the single node source.
There may be several shortest paths; your function will provide only one. The vertex v will not appear
in the map sp if there is no path between v and source.

You will also need the priorityqueue62 class from Assignment 11 to implement Dijkstra’s algorithm. I
have included a working copy in the starter folder, though, you are welcome to use your own.

Testing

Below are seven easy-to-generate graphs that you can use for testing. I strongly encourage you to utilize
these methods to test your graphs. Pick the appropriate ones for testing your code. A module of C++
functions that produce these graphs can be found in graph examples.cpp in the starter directory for this
assignment. The functions also provide examples for using maps and iterators.

i. An n-cycle: The vertices are integers from 0 through n − 1. The vertices u and v are connected by
an edge if u − v = ±1 or u − v = ±(n − 1). There is one connected component, every shortest path
has length at most n/2, and there is a unique cycle of length n.

ii. A complete graph on n vertices: The vertices are integers from 0 through n − 1. Every pair of
distinct vertices forms an edge. There is one connected component, every shortest path has unit length,
and there are many cycles.

iii. An empty graph on n vertices: The vertices are integers from 0 through n−1. There are no edges.
There are n connected components, no paths, and no cycles.

iv. A heap: The vertices are integers from 0 through n − 1. The neighbors of a vertex v are (v − 1)/2,
2v + 1, and 2v + 2, provided those numbers are in the range for vertices. There is one connected
component, the paths are short, and there are no cycles.

v. A truncated heap: The vertices are integers from m through n − 1. The edge relationship is the
same as for the heap. There are n− 1− 2m edges, m + 1 connected components, and no cycles. The
paths, when they exist, are short.

vi. Equivalence mod k: The vertices are integers from 0 to n−1, where k ≤ n. The vertices u and v are
connected by an edge if u− v is evenly divisible by k. There are k components, and each component
is a complete graph.

2



vii. Empty and full triangles: The vertices are integers from 0 to 5. There are three edges, joining
vertices 3, 4, and 5. This graph can test whether your cycle function searches all the connected
components for cycles.

Data Set

Once you have some working methods, you will construct graphs that are much larger than the examples
above by using data from the Netflix challenge. The file movie_reviews.txt also in the starter directory
contains information about movie viewers and their ratings of movies. A typical line in the file looks like
this:

41:30,4;191,3;197,4;357,3;468,4;954,4;

The first number (before the colon) identifies a Netflix customer. Following the colon is a sequence of pairs
of numbers that identify the movie and the customer’s rating of the movie. Note the pairs are separated by
a semicolon. In this example, the customer with i.d. 41 gave movie 30 a rating of 4 and movie 191 a rating
of 3. Each line of the file corresponds to one customer. The customer in this example rated only six movies.
Some of the lines are much longer.

Reading in the Netflix data

In a file named graph movie.cpp, write a function that reads the movie data file and stores the data in a
structure that maps viewers to lists of movie-rating pairs:

map<int,list<pair<int,int> > > read_reviews(string filename);

Note that this is different than our expected format for our graph functions written above, since we have a
list of pairs.

Constructing the Netflix graph

We now want to construct a graph where the vertices are the Netflix customers. Write a function that
takes the data structure returned by read reviews along with two integers (representing two Netflix viewers
whose keys are in the map) and returns true or false, according to whether the two vertices (i.e. Netflix
viewers) are adjacent:

bool adjacent(int v,

int w,

const map<int,list<pair<int,int> > > & reviewMap);

You will experiment with several different ways of defining adjacency. (At the end, you are asked to provide
results for three different definitions of adjacency). An easy one to begin with is that two Netflix viewers
are adjacent if there is at least one movie that both viewers have rated. Another (stricter) definition is that
two viewers are adjacent if they have three movies in common and they have given the same rating to each
of the three.

Write a third function that uses the map derived from the movies file and the adjacent function to create
a graph that can be studied with the graph functions that you wrote:

map<int,list<int> >

create_graph(const map<int,list<pair<int,int> > > & reviewMap);

Notice that the create graph method will call your adjacent function to determine if two users are adjacent
or not.

Finally, write a main function that uses the methods above (including some from the first part). Your main
function should create three different graphs each with a different notion of adjacency. For each graph, you

3

movie_reviews.txt


should print (1) the number of connected components and (2) the size of each connected component. Create a
text file named results.txt that includes these results and also includes a written description/interpretation
for each set of results.

Note, all of the functions above read reviews, adjacent, create graph, and main should be in the
graph movie.cpp file.

Keep in mind that your program may be tested on a file movie_reviews.txt that is different from the one
supplied. You can assume that the file will have no blank lines, and each viewer number appears at most
once, but some viewers may have rated no movies.

Getting Started

The above section recommends a plan of attack for this assignment – namely, start by implementing and
testing your graph algorithms. Then move to the Netflix data (reading in the data, defining adjacency, and
generating different graph structures).

Grading

criterion points
connected components 3
cycles 3
shortest paths 3
read reviews 2
adjacent 2
create graph 2
results.txt 4
follows specification 2
appropriate comments (including JavaDoc) 2
style and formatting 1
submitted correctly 1

Submitting Your Work

Submit your three files in a folder named “Assignment12 LastNameFirstName”. Make sure you and your
partner’s name are at the top of every file. Make sure your code follows the specifications above exactly and
that your files are well-documented in the usual way with Javadoc comments, etc.

4

results.txt
movie_reviews.txt


Hints

• Be careful with your parameter passing. Remember if you pass a class (object) using call-by value, it
will copy everything. Any modifications, etc. you make to that object locally in the method will NOT
appear outside of that method. Most of the time, you’ll want to pass classes (objects) using call-by
reference or call-by constant reference.

• In addition, if you don’t use call-by reference, in some situations you will have run-time/memory issues
because of the data copying, for example, if you have a recursive method that passes the graph along.

• It may take a minute or two for your create graph method to generate the final graph. If you want
to check that it’s working, you can print out something in your loop to see the progress.

• The istringstream class in #include sstream will be useful for parsing the movie data. Review your
use of this class from Lab 13.

A note on the data.

The data in the file movie reviews.txt was extracted from the Netflix Prize sample data set. See
http://www.netflixprize.com for more details about the prize and the data. We are bound by the
conditions stated in /common/cs/cs062/netflix/README:

The data set may be used for any research purposes under the following conditions:

• The user may not state or imply any endorsement from Netflix.

• The user must acknowledge the use of the data set in publications resulting from the use of the
data set, and must send us an electronic or paper copy of those publications.

• The user may not redistribute the data without separate permission.

• The user may not use this information for any commercial or revenue-bearing purposes without
first obtaining permission from Netflix.

The full set contains 480,189 viewers and 17,770 movies. Our data are comprised of the subset containing
the 1495 viewers with the lowest serial numbers and the first 1000 movies. We have no direct way of
identifying the viewers, but we can identify the movies. The file that associates numbers to movie titles is
/common/cs/cs062/netflix/movie titles.txt.

5

http://www.netflixprize.com
/common/cs/cs062/netflix/README

