
Animals – Twenty Questions

Part 1 due Tuesday April 21, 2015

Part 2 due Tuesday April 28, 2015

Objectives

For this assignment, you will:

• Gain experience programming in C++

• Gain experience working with heap-allocated memory in classes

• Gain more experience with tree data structures and recursive methods

• Implement a basic Artificial Intelligence algorithm

Description

In this assignment we will play a guessing game (somewhat similar to 20 questions), with the

computer doing the guessing—and learning at the same time. In the sample below, the human’s

responses are shown after the question marks.

Welcome to the Animals game!

Shall we play a game? y

Were you thinking of a elephant? n

Doh! What was the animal? cow

What question separates cow from elephant? Does it moo?

What is the correct answer for this animal? y

Shall we play a game? y

Does it moo? y

Were you thinking of a cow? y

Great!

Shall we play a game? y

Does it moo? n

Were you thinking of a elephant? n

Doh! What was the animal? gnat

What question separates gnat from elephant? Is it bigger than a breadbox?

What is the correct answer for this animal? n

Shall we play a game? y

Does it moo? n

Is it bigger than a breadbox? y

Were you thinking of a elephant? n

Doh! What was the animal? whale

1



What question separates whale from elephant? Does it live in the water?

What is the correct answer for this animal? y

Shall we play a game? n

Bye!

The program maintains a binary tree whose internal nodes contain questions and whose leaves

contain the names of animals. The left and right children of an internal node correspond to the

responses “no” and “yes” (left being no and right be yes). When the program makes a wrong

guess, it collects enough information to create a new node. The original leaf (the one with a wrong

answer) is replaced by a new internal node that contains a new question and whose children are

the old wrong answer and the new right answer.

Notice that the tree has the property that a node is either a leaf or has two children. That property

makes it easy to distinguish answers from questions. It also allows us to store trees as text files,

with the nodes listed in preorder. Here is a picture and the corresponding textual representation

of a simple tree:

�
�
�

@
@
@

�
�
�

@
@
@
�

�
�

@
@
@

n y

n y

n y

moo?

bigger? cow

gnat water?

elephant whale

QDoes it moo?

QIs it bigger than a breadbox?

Agnat

QDoes it live in water?

Aelephant

Awhale

Acow

The lines in the file follow a preorder traversal of the tree. A question is prefixed by the letter Q and

an answer by A. Do not specify empty trees in the file as they do not provide useful information.

The shortest possible file has one line, an answer.

Classes

This program has three cpp files BinaryTreeIO.cpp, BinaryTree.cpp, and AnimalGame.cpp. The

corresponding header files have been provided. It may be helpful to look at Bailey’s implemen-

tation of a BinaryTree (source code is available on the course “Documentation and Handouts” page).

In general, all the nodes/trees will be created with new and all the variables will be of type

BinaryTree*. The main C++ libraries that you will use are string, iostream, and fstream.

Look at the link on the course resources page for C++ documentation on these classes.

Make sure there is a file called animals.tree in the directory where you are running your program

(see AnimalGame.cpp) below or you will get an error!

BinaryTreeIO.cpp

The file BinaryTreeIO.cpp provides functions to read and write a data file named animals.tree

which stores the binary tree. The function declarations (i.e. prototypes) are provided in the file

2



BinaryTreeIO.h.

This file will be the shortest and simplest. The header file specifies two functions whose actions

should be straightforward: open a file named animaltree, call a recursive function to do the work,

and then close the file. The equivalent Java methods are in the class AnimalTree.

As in our Java version, the easiest way to do this is to write recursive helper methods. The recursive

functions will reflect the steps in a preorder traversal. The only parts to fill in are the file oper-

ations and the BinaryTree manipulations. You can write your own auxiliary functions as necessary.

As an example, here is a function that carries out a preorder traversal and counts the number of

characters in all the strings:

int charCount(BinaryTree* root) {

if (root == NULL){ // just in case

return 0;

}else if (root->isEmpty()){

return 0;

}else{

return root->getString().length() +

charCount(root->leftChild()) +

charCount(root->rightChild());

}

}

Notice that there is no class named BinaryTreeIO! This file simply provides two functions. There

are no instance variables. In Java, these two functions would have to be attached to a class and

would be declared static.

BinaryTree.cpp

The file BinaryTree.cpp provides the implementation for the BinaryTree class. The class decla-

ration is provided in the header file BinaryTree.h. Each node in the binary tree contains a single

string.

There are many functions to implement in the BinaryTree class but most of them are short and

simple. Completing this part is mostly a task in translating your knowledge of binary trees into

C++. As a result, you will likely want to refer to the implementation of the class BinaryTree.java

in Bailey’s structure library. Note: you may not have to use some of the functions, like height()

and depth(), but include them anyway (we may test them).

You must be very clear on how the different types of nodes are identified. Here is one possible

convention:

• Recall that for our application, a node either has two children or is a leaf node. Thus, if one

of left or right is NULL, then they both are NULL.

3



• An empty tree is a node whose left and right members are NULL.

• An empty tree has a NULL parent. That way, we can use just one empty node throughout

the program, which you can define in your C++ class as a standalone, static variable, say

empty.

• A leaf is a non-empty node whose left and right children are empty (not NULL! – being

empty and being null are two separate states).

• A root is a non-empty node whose parent is NULL.

One of the consequences of this design decision is that each node has a unique parent and may

therefore appear in only one tree. It leads to the “deep copy” requirement discussed below.

The tree nodes contain answers and questions. Answers are at leaf nodes and questions are at

non-leaves. As in the Java version, do not add any additional information to the nodes to tell them

apart. In particular, do not store in a node the leading character, A or Q, from the animals.tree file.

Notice that there is no setString() function. We want you to construct the trees by detaching

subtrees and reassembling them. The greatest challenge is to maintain the parent pointers properly

when executing setLeftChild() and setRightChild(). As we discussed in class when we covered

binary trees, the setParent() method is private to insure the integrity of the parent pointers.

Again, it may be useful to look at the Java BinaryTree implementation in the structure5 library,

which can be found via the link on the class handouts web page.

Finally, we have included code below for some of the methods of this class. You should read through

and make sure to understand what is going on, but you may copy and use this code in the version

you submit.

AnimalGame.cpp

This file, as in the Java version, implements the main method that interacts with the human player

to play the game and maintains the game tree. One variation from our Java version is that we won’t

deal with input and output from the command-line. Instead, when your game starts it should read

from a file named “animals.tree” and when the game finishes it should update this file, that is,

write the final tree to “animals.tree”.

AnimalGame.cpp will have more include directives than the other files.

#include <iostream>

#include <string>

#include "BinaryTree.h"

#include "BinaryTreeIO.h"

Getting Started

Read through this entire document to make sure you understand the assignment. To make it easier

to develop your code incrementally, we have provided:

4



• object files (.o files) for each class.

• A Java implementation of the Animal game is available at

/common/cs/cs062/assignments/assignment11/JavaAnimals/

The focus of your work will be to rewrite this Java program into C++. The starter files for this

assignment (which include the header files and the object files) can be found at:

/common/cs/cs062/assignments/assignment11/

Look at the different header files and make sure you understand the basics of what the interface

for each class is doing. Note: you may NOT change the header files provided and your program

must compile with these header files.

You are now ready to start coding. You will likely work on BinaryTreeIO.cpp first, as it is due

first. After that pick the file that seems easiest to you.

Once you have one of the .cpp files implemented, you can check it by linking with our provided

binaries. For example, when you finish writing BinaryTreeIO.cpp, then typing the command

g++ -c BinaryTreeIO.cpp

will generate a new object file (.o) for your implementation1. Then, you can link all of the object

files to create an executable file:

g++ -o animalgame BinaryTreeIO.o BinaryTree.o AnimalGame.o

This will generate a runable version of your program in file animalgame.

You should also consider writing your own main method either in that class or in a separate file to

test the functionality. Make sure when you’re done though, to remove any main methods in your

.cpp files except the one in AnimalGame.cpp.

Grading

You will be graded based on the following criteria:

criterion points

BinaryTreeIO 4

BinaryTree 6

AnimalGame 5

assert error checking 2

appropriate comments (including JavaDoc) 2

style and formatting 1

submitted correctly 1

1Note that if you ever want to use our implementation again, you will need to copy it again from /common

5



Submitting Your Work

Part 1, consisting of your BinaryTreeIO.cpp class, will be due on Tuesday, April 21. Part 2,

consisting of the rest of the program will be due one week later, on Tuesday, April 28.

For part 1, put your BinaryTreeIO.cpp file in a folder named “Assignment11P1 LastNameFirstName”

and drag it to the dropbox. Notice the “P1” which stands for part 1.

For part 2, submit all three .cpp files (including BinaryTreeIO.cpp) in a folder named “Assign-

ment11P2 LastNameFirstName” and drag it to the dropbox. Notice the “P2” which stands for

part 2.

Make sure your code for both parts compiles with the included files as they are provided and that

your files are well-documented files in the usual way with Javadoc comments, etc.

Memory management in the BinaryTree class

One of most delicate aspects of C++ programming is making sure that all objects created with

new are properly deleted. One must avoid stale pointers and memory leaks. The copy constructor,

the destructor, and the assignment operator are the critical functions for these tasks.

In our BinaryTree class, the only job of the destructor is to delete all dynamically-constructed

subtrees. We can do that with a simple call to clear().

BinaryTree::~BinaryTree() {

clear();

}

Although nice, this solution pushes the hard work off onto clear(), which recursively deletes the

left and right subtrees and leaves the current object empty.

Below is the code for clear(). The implementation is mostly straightforward; there is just one

subtlety. In the sample code, we keep a special empty tree, called empty, and use it wherever we

can to avoid creating lots of empty trees. We must be careful, however, not to delete the tree

named empty.

void BinaryTree::clear() {

// don’t change an empty tree

if (isEmpty()){

return;

}

// detach this tree from its parent, if any,

// to avoid stale pointers from the parent

if (isLeftChild()){

parent->setLeft(empty);

6



} else if (isRightChild()){

parent->setRight(empty);

}

// delete the children recursively

if (left != empty){

delete left;

}if (right != empty){

delete right;

}

// make this an empty tree

value = "";

left = NULL;

right = NULL;

parent = NULL;

}

Assignment operator

The assignment operator “copies” data into the (already constructed) current object. The first

task is to recycle all the current descendants—which is exactly what clear() does. The next step

is to assign new values to the fields, calling the copy constructor when necessary to obtain a deep

copy.

const BinaryTree & BinaryTree::operator=(const BinaryTree & rhs) {

// avoid self-copies

if (this != &rhs) {

// destroy the nodes in the current tree

clear();

// assign default values

value = rhs.getString();

left = NULL;

right = NULL;

parent = NULL;

// copy the children, as necessary

if (!rhs.isEmpty()) {

if (rhs.getLeftChild()->isEmpty()){

left = empty;

}else{

setLeft(new BinaryTree(*rhs.getLeftChild()));

}

if (rhs.getRightChild()->isEmpty()){

7



right = empty;

}else{

setRight(new BinaryTree(*rhs.getRightChild()));

}

}

}

// return the newly-copied object

return *this;

}

Copy constructor

The copy constructor is nearly identical. In fact, similar enough, that we can use our trick of:

BinaryTree::BinaryTree(const BinaryTree & other){

*this = other;

}

If you wanted to implement it for some reason, the only major difference is that the object under

construction is a brand new object, so there is no need to call clear().

As mentioned earlier, every non-empty node has a unique parent and can trace its ancestry to a

unique root. This requirement leads to a “no sharing” policy and forces us to make deep copies.

When we copy a subtree, either through the copy constructor or assignment, the copy is the root

of its own tree. It cannot, and does not, share a parent with the object being copied.

Other implementations are possible, of course, and often the overhead of deep copying would be

intolerable. Think about the options.

8


