
C++ Priority Queue
Due Sunday April 12, 2015

Objectives

For this assignment, you will:

• Gain experience programming in C++

• Gain experience using a header file

• Gain experience using the STL classes vector, pair, and map

Description

In this assignment, you will create a priority queue. You should construct a correct, robust, and elegant
data structure. You may want to write a small program to test it, but the product will be just the header
file and the implementation file for priorityqueue62 named, naturally enough, priorityqueue62.h and
priorityqueue62.cpp. This will also give you some practice in reading and using documentation.

We want to build a priority queue that stores pairs of integers. Each pair consists of a unique key and a
priority. The priority should be a non-negative integer. The priority queue will allow the user to insert pairs,
to remove the pair with the lowest priority, and to reduce the priority of an existing pair in the priority
queue. Please use pair from the Standard Template Library (STL) to store the pair of integers in the
priority queue. Also you must use the assert statement to check all preconditions.

Classes

The priorityqueue62.h header file

The supplied header file suggests an implementation that uses a heap-ordered vector like that in the class
VectorHeap from Bailey’s structure library (see the source code on the handouts page). The only additional
complication is that this implementation must be able to locate a particular key in the heap. An additional
data structure, a map, from keys to heap indices, will do the trick.

Some private member functions and private variables are included in the header file. These may be useful
but if you don’t want to use them, that’s fine, just change the header file.

Whatever your implementation, all of the functions must work correctly in logarithmic time. In
other words, doing a linear search for a key across a vector is not permitted. As stated in the STL docu-
mentation, the map operations are guaranteed to run in logarithmic time.

It is typical to create an identically named .cpp file (in this case, priorityqueue62.cpp) that contains the
implementation for each of the member functions. The member functions in the header file are as follows:

priorityqueue62() The default constructor creates an empty priority queue.

~priorityqueue62() The destructor must match the implementation and recycle all dynamically-created
objects. In our case, we don’t create any dynamically-created objects, so this should be very simple.
Just put

priorityqueue62::~priorityqueue(){}

1



in your .cpp file and it should work.

void push(int key, int priority) We adopt the push-pop language of the STL’s priority queue.
This function inserts a new element with a given key and priority. The key must not already appear
in the queue, and the priority must be non-negative.

void pop() This function removes the element with smallest priority. No value is returned. It is an error
to pop from an empty priority queue.

int top priority() const In the STL priority queue, the function top() returns the element of least
priority. Instead of returning a pair, we have two “top” functions that return integers. This one gives
the least priority value.

int top key() const This “top” function gives the key of the element of least priority.

void reduce priority(int key, int newpriority) This function lowers the priority of a specified ele-
ment. It is an error if the key is not present in the priority queue, or if the new priority is negative or
is greater than the current priority.

int get priority(int key) This function returns the priority of the element with the specified key. It
returns −1 if the key is not present in the priority queue. Technically, we should make this method
const, since it does not modify the priority queue, however, this will make life easier for you.

bool is empty() const This function tells us if the priority queue is empty.

bool is present(int key) const This function returns true if there is an element in the queue with the
specified key.

void clear() This is a straightforward method that empties the priority queue.

int size() const This is a function that returns the number of elements in the queue.

Getting Started

1. Begin by reading about assertions in C++. Their purpose is the same as assertions in Java, and the
notation is not very different. See pages 159–160 in Weiss’s book or look in the C library pages on the
C++ reference site (i.e. “cassert”).

2. Then read about the STL classes vector and map and the pair class (which you can find by doing a
search in the C++ library reference pages linked off the “Documentation and Handouts” page).

3. Create a new C++ class called priorityqueue62.cpp. This is where you will implement all of the
member functions.

Grading

criterion points
Functionality of priority queue 10
assert error checking 4
Appropriate comments (including JavaDoc) 2
Style and formatting 2
General correctness 2
submitted correctly 1

2



Submitting Your Work

Submit the files priorityqueue62.h and priorityqueue62.cpp. Since we are no longer exporting from
Eclipse and creating jar files, just make a directory called “Assignment10 LastNameFirstName” and put
your files in there and move the directory to the dropbox as before. This will be the approach we will take
for all of our C++ submissions.

Even though we’re writing in C++, you must continue to comment your code as before using the Javadoc
style of commenting.

Some hints

• Try and follow the outline from our existing binary heap.

• As always, try and code incrementally, testing and compiling as you go.

• Use cout to help you debug (but remove these when you submit your final version).

• The one challenge with this assignment beyond the C++ part, is keeping the map (i.e. hashtable) up
to date when you change the heap. Think about exactly what you are storing in the map to make
methods efficient.

• If you have a pair object, you can simply access the two elements of that object using .first and
.second. Look at the examples in the documentation.

3


