
Lecture 9: Iterators &
Linked Lists

CS 62
Spring 2015

Kim Bruce & America Chambers

Assignment 3

• On-disk sorting: What to do when more data
than can fit in memory of computer?

• Read info on File I/O in Java and file systems in
appendix to assignment. See on-line Streams
cheat sheet!

• Lab 3: More complexity/timing

Induction Proofs

• To prove for all n ≥ m, P(n), using
• Simple induction:

• Prove P(m)

• Assuming P(k), prove P(k+1)

• Strong induction:
• Assuming P(i) for all m ≤ i < k, prove P(k)

• May or may not do P(m) as a special case

• Strong induction useful for divide and conquer algorithms (where
algorithm dependent on more than just k-1 case)

Sort Review

• Mergesort:
• Algorithm: Divide in half, sort each half, then merge

them in order

• Complexity: O(n log n)
• Proved f(n) ≤ n log n + n by strong induction

• Why is that O(n log n)?

• Quicksort: New divide & conquer:
• Algorithm: Move small elts to left, large to right 

Sort left elts, sort right elts, done!

• Complexity: O(n log n) on average, O(n2) in worst case

When we write log n in CS, we mean log2 n

Iterators

• Provide elements of data structure one at a
time so can iterate through elts performing
operations.

• Interface in standard Java

public interface Iterator<E> {
 // Returns true if the iteration has more elements.
 boolean hasNext()

 // Returns the next element in the iteration.
 E next()

 /**
 * Removes from the underlying collection the last element
 * returned by this iterator (optional operation). */
 void remove()
}

Iterator in Java

Iterator Rules

• Remove is optional (we won’t use it)

• Only allowed to call it once and then must
terminate iteration.

• Never change a collection in middle of an
iteration
• Behavior is officially undefined if do!

• Iterator often copies data structure before iterating, so
changes may not appear to original!

Iterable

• Data structures with an iterator, satisfy
interface Iterable:
• Has method Iterator<T> iterator()

• Example: ArrayList<E> has method
• Iterator<E> iterator()

• See definition and use of of iterator in
ArrayIndexList<E>.

Code using Iterator
Iterator<String> listIterator = myList.iterator();

while(listIterator.hasNext()){
System.out.println(listIterator.next());

}

while(listIterator.hasNext()){
 String elt = listIterator.next()
 System.out.println(elt);
}

Can make it even easier!

Iterators and For loops

• Abbreviates previous code!

• Fine as long as myList has an iterator method

for(String elt: myList){
 System.out.println(elt);
}

List Iterator

• Notice can have two iterators going through
list independently!

• Never modify a data structure when iterating
through elements as may get unpredictable
results.
• Most classes in Java collection classes have iterators

which are designed to “fail fast”. Throw an exception if
continue with iterator (e.g., next()) after add or delete.

Java 8

• See Iterating over collections in Java 8

• forEach method now in collection classes

public void forEach(Consumer<? super E> action)
Description copied from interface: Iterable

Performs the given action for each element of the Iterable until all
elements have been processed or the action throws an exception.
Unless otherwise specified by the implementing class, actions are
performed in the order of iteration (if an iteration order is
specified). Exceptions thrown by the action are relayed to the
caller.

Code using forEach

• No explicit control over iterator

• Similar to Java 5 built-in for loop
• but it is a method added by programmer!!

• Consumer is an interface with method 
 void accept (T t)

• accept method has code to be executed

• Most valuable when more than one way to traverse

• May only access effectively final variables from scope

myList.forEach(elt ->
 {System.out.println(elt);});

lambda expression

Code
• I added to ArrayIndexList:

• forEach is “default method” of Iterable
interface.
• Automatically inherited in all classes implementing it.

• See article for restrictions on default methods — can’t
access instance variables!

public void forEach(Consumer <? super E>action) {
 for (E elt: this) {
 action.accept(elt);
 }
 }

Linked Lists

• Alternate implementation of lists

• Trade-offs in complexity
• With ArrayList expensive to add at beginning of list

• Linked lists inexpensive to add early

• However, slow to access ith element.

Linked List

• Composed of Nodes
• Think of as pop-beads

• See code in structure5 library
• From documentation page!

• SinglyLinkedList (not std Java!)
• keep track of head and size

• Extends AbstractList -- look at on own!
• Vector also extends AbstractList

• Do algorithms on board!

