
Lecture 6: Complexity
CS 62

Spring 2015
Kim Bruce & America Chambers

Lab This Week

• Timing ArrayList operations
• Encourage working in pairs

• Stopwatch class: start(), stop(), getTime(), reset()

• Java has Just-In-Time compiler
• Must “warm-up” before you get accurate timing

• What can mess up timing?

• Uses Vector from Bailey rather than ArrayList
from Java libraries because can change way it
increases in size.

Programming Assignment
This Week

• Weak AI/Natural Language Processing:
• Generate text by building frequency lists based on pairs

of words. ArrayList of Associations of String (words) and
Integer (count of that word).

Order of Magnitude

• Definition: We say that g(n) is O(f(n)) if there
exist two constants C and k such that  
|g(n)| <= C |f(n)| for all n > k.

• Examples: 2n+1, n3-n2+83, 2n+n2

• Used to measure time and space complexity of
algorithms on data structures of size n.

• Most common are
• O(1) - for any constant

• O(log n), O(n), O(n log n), O(n2), ..., O(2n)

Use simplest version in
O(...)

Complexity

84 Design Fundamentals

2 2

log()nnn!

3

sqrt()

1

0
0 1 2 3 4 5

4

5

n

n n

nlog()

2
n

Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.

2

2

n!

log()nn

sqrt()n
log()n

n

60

40

20

80

100

0
0 20 40 60 80 100

n

n

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

Comparing Orders of Magnitude
• Suppose have ops w/complexities given &

problem of size n taking time t.

• How long if increase size of problem?

Problem Size: 10 n 100n 1000n
O(log n) 3+t 7 + t 10+ t

O(n) 10 t 100 t 1000 t

O(n log n) > 10 t > 100 t > 1000 t

O(n2) 100 t 10,000 t 1,000,000 t

O(2n) ~ t10 ~ t100 ~ t1000

Adding to ArrayList

• Suppose n elements in ArrayList and add 1.

• If space:
• Add to end is O(1)

• Add to beginning is O(n)

• If not space,
• What is cost of ensureCapacity?

• O(n) because n elements in array

EnsureCapacity

• What if only increase in size by 1 each time?
• Adding n elements one at a time to end

• Total cost of copying over arrays: 1+2+3+...+(n-1) = n(n-1)/2

• Total cost of O(n2)

• Average cost of each is O(n)

• What if double in size each time?
• Suppose add n = 2m new elts to end

• Total cost of copying over arrays: 1+2+4+...+n/2 = n-1, O(n)

• Average cost of O(1), but “lumpy”

ArrayList Ops

• Worst case
• O(1): size, isEmpty, get, set

• O(n): remove, add

• Add to end, on average O(1)

Complexity

• 1 + 2 + ... + n comes up often in complexity
• E.g. selection and insertion sorts

• 1 + 2 + ... + n = n(n+1)/2

• Similarly, 1 + 2 + ... (n-1) = n(n-1)/2

• Proof by cleverness
• or mathematical induction

Proof-by-induction

• Induction key to understanding recursion
• and lots of other things

• To prove P(i) for all i ≥ 0
• Base case: Prove P(0)

• Induction case: Let k ≥ 0 and assume P(k) is true 
Use assumption to prove P(k+1).

Selection Sort (helper)
 /*
 * Return index of smallest number in array between
 * startIndex and array.length.
 * PRE: startIndex must be valid index for array
 * POST: returns index of smallest value in range
 startIndex - array.length
 */
 int indexOfSmallest(int[] array, int startIndex) {
 int smallIndex = startIndex;
 for (int i = startIndex + 1; i < array.length; i++) {
 if (array[i] < array[smallIndex]) {
 smallIndex = i;
 }
 }
 return smallIndex;
 }

Selection Sort (helper)
/*
 * PRE: startIndex must be valid index for array
 * POST: Sorts array from startIndex to array.length.
 */
 void selectionSort(int[] array, int startIndex) {
 if (startIndex < array.length - 1) {
 // find smallest element in rest of array
 int smallest = indexOfSmallest(array, startIndex);

 // move smallest to index startIndex
 swap(array, smallest, startIndex);

 // sort everything in the array after startIndex
 selectionSort(array, startIndex + 1);
 }
 }

Analysis

• Count number of comparisons of elts of array
• All comparisons are in “indexOfSmallest”

• At most n-1 if startIndex ... array.length-1 has n elements.

• Prove # of comparisons in selection sort of array of size
n is 1 + 2 + ... + (n-1).
• Base case: n = 0 or n = 1: No comparisons

• Assume true for startIndex ... array.length has n-1 elements

• Show for n elements.

