Lecture 28: HashMap &
Collections

CS 62
Spring 2015
Kim Bruce & America Chambers

Map<K,V>

* Collection of associations between a key and
associated value, e.g. name & phone number

¢ Though doesn’t use Bailey’s Association class
 As usual lots of implementations

e Also called dictionaries after example

e Look up table!

Hash Functions

e Want H: EltType — Subscripts, where
e Hi(elt) can be computed quickly
e if ex = e2 then H(en) = H(e2)

e His one-to-one
e Usually difficult to achieve
* Looked at examples Wednesday

What if get Hash Clashes?

e Home address of key K is H(K).

* Suppose have two keys K1 # K2,
e but H(K1) = H(K?2), i.e., have same home address

e What happens when insert both into hash table?

¢ Note original key and value must both be stored!!

¢ if redefine equals then must redefine hashCode * Two ways out:

SO x.equals(y) => 1. Rehash as needed to find an empty slot (open addressing)
x.hashCode() == yhashCode(2. External chaining

QQuadratic Probing

e Use (home + j») % TableSize on jth rehash

» Helps with secondary clustering, but not primary

e Can result in case where don’t try all slots

e E.g., TableSize = 5, and start with H = 1. Rehashings give 2, o, o, 2,
1,2,0,0,..

e The slots 3 and 4 will never be examined to see if they have room.

Double Hashing

e Use second hash function on key to determine
delta for next try.
e E.g., delta(Key) = (Key % (TableSize - 2)) + 1
e Should help with primary and secondary clustering.

e Ex: Spose H(n) = n % 5. Then H@) = H(6) = HG).
o However, delta(1) = 2, delta(6) = 1, and delta (11) = 3.

External Chaining

e Each slot in table holds unlimited # elts

e Each slot is list - implemented as desire

 For good performance, list should be short

¢ so no need for balanced binary search tree - waste of time

e Advantages

* Deleting simple

 # elts in table can be > # slots

* Avoids problems of secondary clustering

* Primary clustering?

Analysis

* Behavior of the hash clash strategies depends
on the load factor of the table.

* Load factor o = # elts in table/size of table
¢ ranges between o and 1 with open addressing

e can be > 1 with external chaining.

 Higher the load factor, the more likely your are
to have clashes.

Performance

Strategy Unsuccessful | Successful

L1ne;%r 1/2 i+ /(-a)?) | 1/2 (1+ 1/(1-)
rehashing

Double

hashing /(- - (1/o) log(r-a)
Extf:rpal o +e-¢ I+1/20
chaining

Entries represent number of compares needed to find elt or

demonstrate not there.

Performance for a. = .9

Strategy Unsuccessful | Successful
Linear
rehashing 53 55
Double
hashing 1o "4
External
hashing 3 45

Number of Probes

linear, not found ——
linear, found
double, not found -
double, found T
chaining, not found ----- i
chaining, found ----

0 0.2 04 0.6 0.8 1 1.2

Load Factor (Stored Values/Table Size)

Space requirements

e Open addressing: TableSize + n*objectsize

e External chaining: TableSize +n*(objectsize+1)

¢ Rule of thumb:

e Small elts, small load factor -- use open addressing

e Large elts, large load factor - use external chaining

Using Hashcodes in Java

e HashMap and HashTable both implement Map
e HashTable has all ops synchronized!
e HashMap allows null keys and values - HT doesn’t

e HashSet is hashtable based implementation of sets.

HashMap<K,V>

e HashMap constructor
¢ HashMap(int initialCapacity, float loadFactor)

¢ Default load factor is .75 if not specified, default capacity
II.

e If loadFactor exceeded then create larger table and
rehash all old values - expensive!

e Implementation seems to use external chaining

Capacity

* Don’t want to set capacity too high as wastes
space, though resizing expensive.

e Iterators through table require space
proportional to capacity and current size.

Collections Framework

e Java library implementations of most useful
general data structures.

* Description at http://docs.oracle.com/javase/6/
docs/technotes/guides/collections/
reference.html

e Includes concurrent implementations of data
structures

