
Lecture 28: HashMap &
Collections

CS 62
Spring 2015

Kim Bruce & America Chambers

Map<K,V>

• Collection of associations between a key and
associated value, e.g. name & phone number
• Though doesn’t use Bailey’s Association class

• As usual lots of implementations

• Also called dictionaries after example
• Look up table!

Hash Functions

• Want H: EltType → Subscripts, where
• H(elt) can be computed quickly

• if e1 != e2 then H(e1) != H(e2)
• H is one-to-one

• Usually difficult to achieve

• Looked at examples Wednesday

• if redefine equals then must redefine hashCode
so x.equals(y) =>  
 x.hashCode() == y.hashCode()

What if get Hash Clashes?

• Home address of key K is H(K).

• Suppose have two keys K1 ≠ K2,
• but H(K1) = H(K2), i.e., have same home address

• What happens when insert both into hash table?
• Note original key and value must both be stored!!

• Two ways out:
1. Rehash as needed to find an empty slot (open addressing)
2. External chaining

Quadratic Probing

• Use (home + j2) % TableSize on jth rehash
• Helps with secondary clustering, but not primary

• Can result in case where don’t try all slots
• E.g., TableSize = 5, and start with H = 1. Rehashings give 2, 0, 0, 2,

1, 2, 0, 0, ...

• The slots 3 and 4 will never be examined to see if they have room.

Double Hashing

• Use second hash function on key to determine
delta for next try.
• E.g., delta(Key) = (Key % (TableSize - 2)) + 1

• Should help with primary and secondary clustering.

• Ex: Spose H(n) = n % 5. Then H(1) = H(6) = H(11).
• However, delta(1) = 2, delta(6) = 1, and delta (11) = 3.

External Chaining

• Each slot in table holds unlimited # elts
• Each slot is list -- implemented as desire

• For good performance, list should be short
• so no need for balanced binary search tree -- waste of time

• Advantages
• Deleting simple

• # elts in table can be > # slots

• Avoids problems of secondary clustering

• Primary clustering?

Analysis

• Behavior of the hash clash strategies depends
on the load factor of the table.

• Load factor α = # elts in table/size of table
• ranges between 0 and 1 with open addressing

• can be > 1 with external chaining.

• Higher the load factor, the more likely your are
to have clashes.

Performance

Strategy Unsuccessful Successful

Linear
rehashing 1/2 (1+ 1/(1-α)2) 1/2 (1+ 1/(1-α))

Double
hashing 1/(1-α) - (1/α) log(1-α)

External
chaining α +e-α 1 + 1/2 α

Entries represent number of compares needed to find elt or
demonstrate not there.

Performance for α = .9

Strategy Unsuccessful Successful

Linear
rehashing 55 5.5

Double
hashing 10 ~4

External
hashing 3 1.45

390 Maps

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2

N
um

be
r o

f P
ro

be
s

Load Factor (Stored Values/Table Size)

linear, not found
linear, found

double, not found
double, found

chaining, not found
chaining, found

Figure 15.12 The shape of the theoretical performance curves for various hashing
techniques. (These graphs demonstrate theoretical predictions and not experimental re-
sults which are, of course, dependant on particular data and hashing functions.) Our
hash table implementation uses linear probing.

Space requirements

• Open addressing: TableSize + n*objectsize

• External chaining: TableSize +n*(objectsize+1)

• Rule of thumb:
• Small elts, small load factor -- use open addressing

• Large elts, large load factor -- use external chaining

Using Hashcodes in Java

• HashMap and HashTable both implement Map
• HashTable has all ops synchronized!

• HashMap allows null keys and values - HT doesn’t

• HashSet is hashtable based implementation of sets.

HashMap<K,V>

• HashMap constructor
• HashMap(int initialCapacity, float loadFactor)

• Default load factor is .75 if not specified, default capacity
11.

• If loadFactor exceeded then create larger table and
rehash all old values -- expensive!

• Implementation seems to use external chaining

Capacity

• Don’t want to set capacity too high as wastes
space, though resizing expensive.

• Iterators through table require space
proportional to capacity and current size.

Collections Framework

• Java library implementations of most useful
general data structures.

• Description at http://docs.oracle.com/javase/6/
docs/technotes/guides/collections/
reference.html

• Includes concurrent implementations of data
structures

