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Map<K,V>

• Collection of associations between a key and 
associated value, e.g. name & phone number
• Though doesn’t use Bailey’s Association class

• As usual lots of implementations

• Also called dictionaries after example
• Look up table!

Hash Functions

• Want H: EltType → Subscripts, where
• H(elt) can be computed quickly

• if e1 != e2 then H(e1) != H(e2)
• H is one-to-one

• Usually difficult to achieve

• Looked at examples Wednesday

• if redefine equals then must redefine hashCode 
so x.equals(y) =>  
               x.hashCode() == y.hashCode()

What if get Hash Clashes?

• Home address of key K is H(K).

• Suppose have two keys K1 ≠ K2, 
• but H(K1) = H(K2), i.e., have same home address

• What happens when insert both into hash table?
• Note original key and value must both be stored!!

• Two ways out:
1. Rehash as needed to find an empty slot (open addressing)
2. External chaining



Quadratic Probing

• Use (home + j2) % TableSize on jth rehash
• Helps with secondary clustering, but not primary

• Can result in case where don’t try all slots
• E.g., TableSize = 5, and start with H = 1.  Rehashings give 2, 0, 0, 2, 

1, 2, 0, 0, ... 

• The slots 3 and 4 will never be examined to see if they have room. 

Double Hashing

• Use second hash function on key to determine 
delta for next try.
• E.g., delta(Key) = (Key % (TableSize - 2)) + 1

• Should help with primary and secondary clustering.

• Ex:  Spose H(n) = n % 5.  Then H(1) = H(6) = H(11).
• However, delta(1) = 2, delta(6) = 1, and delta (11) = 3.

External Chaining

• Each slot in table holds unlimited # elts
• Each slot is list -- implemented as desire

• For good performance, list should be short
• so no need for balanced binary search tree -- waste of time

• Advantages
• Deleting simple

• # elts in table can be > # slots

• Avoids problems of secondary clustering

• Primary clustering?

Analysis

• Behavior of the hash clash strategies depends 
on the load factor of the table.

• Load factor α = # elts in table/size of table
• ranges between 0 and 1 with open addressing

• can be > 1 with external chaining.

• Higher the load factor, the more likely your are 
to have clashes.



Performance

Strategy Unsuccessful Successful

Linear 
rehashing 1/2 (1+ 1/(1-α)2) 1/2 (1+ 1/(1-α))

Double 
hashing 1/(1-α) - (1/α) log(1-α)

External 
chaining α +e-α 1 + 1/2 α

Entries represent number of compares needed to find elt or 
demonstrate not there.

Performance for α = .9

Strategy Unsuccessful Successful

Linear 
rehashing 55 5.5

Double 
hashing 10 ~4

External 
hashing 3 1.45
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Figure 15.12 The shape of the theoretical performance curves for various hashing
techniques. (These graphs demonstrate theoretical predictions and not experimental re-
sults which are, of course, dependant on particular data and hashing functions.) Our
hash table implementation uses linear probing.

Space requirements

• Open addressing: TableSize + n*objectsize

• External chaining: TableSize +n*(objectsize+1)

• Rule of thumb:
• Small elts, small load factor -- use open addressing

• Large elts, large load factor -- use external chaining



Using Hashcodes in Java

• HashMap and HashTable both implement Map
• HashTable has all ops synchronized!

• HashMap allows null keys and values - HT doesn’t

• HashSet is hashtable based implementation of sets.

HashMap<K,V>

• HashMap constructor
• HashMap(int initialCapacity, float loadFactor)

• Default load factor is .75 if not specified, default capacity 
11.

• If loadFactor exceeded then create larger table and 
rehash all old values -- expensive!

• Implementation seems to use external chaining

Capacity

• Don’t want to set capacity too high as wastes 
space, though resizing expensive.

• Iterators through table require space 
proportional to capacity and current size.

Collections Framework

• Java library implementations of most useful 
general data structures.

• Description at http://docs.oracle.com/javase/6/
docs/technotes/guides/collections/
reference.html

• Includes concurrent implementations of data 
structures


