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Lab

• Using parallelism to speed up sorting using 
Threads and ForkJoinFramework

• Review relevant material.

Assignment

• Manipulate census data using parallelism.

• Work in pairs!

• Discuss design in class on Wednesday.
• Be ready for discussion …

Providing Safe Access
• For every memory location (e.g., object field) in 

your program, you must obey at least one of 
the following:
• Thread-local: Don’t access the location in > 1 thread

• Immutable: Don’t write to the memory location

• Synchronized: Use synchronization to control access to 
the location
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Conventional Wisdom

Thread-Local
• Whenever possible, don’t share resources

• Easier to have each thread have its own thread-local 
copy of a resource than to have one with shared updates

• This is correct only if threads don’t need to 
communicate through the resource
• That is, multiple copies are a correct approach

• Example: Random objects

• Note: Since each call-stack is thread-local, never need to 
synchronize on local variables

• In typical concurrent programs, the vast majority of 
objects should be thread-local: shared-memory should 
be rare – minimize it

Immutable
• Whenever possible, don’t update objects

• Make new objects instead

• One of key tenets of functional programming 
• Hopefully you study this in 52

• Generally helpful to avoid side-effects

• Much more helpful in a concurrent setting

• If a location is only read, never written, no 
synchronization is necessary!
• Simultaneous reads are not races and not a problem

• Programmers over-use mutation – minimize it

Dealing with the Rest

• Guideline: No data races
• Never allow two threads to read/write or write/write the 

same location at the same time

• Necessary: In Java or C, a program with a data 
race is almost always wrong



Worse Than You Think!

• Assertion always true w/
single threaded.

• Looks always true for 
multithreaded.
• OK if f not called at all

• OK after f completes

• Looks OK if in middle of f

• But have race condition

class C { 
  private int x = 0; 
  private int y = 0; 
  void f() { 
    x = 1; 
    y = 1; 
  } 
  void g() { 
    int a = y; 
    int b = x; 
    assert(b >= a); 
  }    
}

Memory Reordering
• For performance reasons, compiler and hardware 

reorder memory operations.

• But, but, ...
• Compiler/hardware will never perform a memory reordering 

that affects the result of a single-threaded program

• The compiler/hardware will never perform a memory 
reordering that affects the result of a data-race-free multi-
threaded program

• So: If no interleaving of your program has a data 
race, then need not worry: result will be 
equivalent to some interleaving

A Second Fix

• If label field volatile, accesses don’t count as 
data races

• Implementation forces memory consistency
• though slower!

• Should have used this in CS 51 w/shared 
variables.

• Really for experts -- better to use locks.

Lock Granularity

• Coarse-grained:  Fewer locks, i.e., more objects per 
lock
• Example: One lock for entire data structure (e.g., array)

• Example: One lock for all bank accounts

• Fine-grained: More locks, i.e., fewer objects per lock
• Example: One lock per data element (e.g., array index)

• Example: One lock per bank account

• “Coarse-grained vs. fine-grained” is really a 
continuum.



Trade-Offs
• Coarse-grained advantages

• Simpler to implement

• Faster/easier to implement operations that access 
multiple locations (because all guarded by the same lock)

• Much easier: ops that modify data-structure shape

• Fine-grained advantages
• More simultaneous access (performance when coarse-

grained would lead to unnecessary blocking)

• Guideline: 
• Start with coarse-grained (simpler) and move to fine-

grained (performance) only if contention on the coarser 
locks becomes an issue.  Alas, often leads to bugs.

Critical-section granularity
• A second, orthogonal granularity issue is critical-

section size
• How much work to do while holding lock(s)

• If critical sections run for too long:
• Performance loss because other threads are blocked

• If critical sections are too short:
• Bugs because you broke up something where other threads 

should not be able to see intermediate state

• Guideline: Don’t do expensive computations or 
I/O in critical sections, but also don’t introduce 
race conditions

Example: ArrayList

• Granularity:
• One lock for entire list or

• One lock per slot

• Critical Section size
• Suppose get access to element, do something expensive 

to see if needs an update and then update
• If too large, then all other accesses blocked

• If too small, then element in slot may change while check.

Don’t Roll Your Own!
• Most data structures provided in standard 

libraries
• Point of lectures is to understand the key trade-offs and 

abstractions

• Especially true for concurrent data structures
• Far too difficult to provide fine-grained synchronization 

without race conditions

• Standard thread-safe libraries like ConcurrentHashMap 
written by world experts

• Guideline: Use built-in libraries whenever they 
meet your needs    Vector vs ArrayList



Deadlock

Deadlock

• What locks are held at a.deposit(amt)?

• Is this a problem?

class BankAccount {
  …
  synchronized void withdraw(int amt) {…}
  synchronized void deposit(int amt) {…}
  synchronized void transferTo(int amt, BankAccount a) {
    this.withdraw(amt);
    a.deposit(amt);
  }  
}

Deadlock

• Suppose have separate threads, each 
transferring to each others’ account

acquire lock for x 
do withdraw from x 

block on lock for y

acquire lock for y 
do withdraw from y 

block on lock for x

Thread 1: x.transferTo(1,y)
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Thread 2: y.transferTo(1,x)

Deadlock

• A deadlock occurs when there are threads  
T1, …, Tn such that:
• For i=1,..,n-1, Ti is waiting for a resource held by Ti+1

• Tn is waiting for a resource held by T1

• In other words, there is a cycle of waiting
• Formalize as a graph of dependencies with cycles bad

• Deadlock avoidance in programming amounts 
to techniques to ensure a cycle can never arise



A Last Example

• Bounded buffer is a queue with a fixed size.
• Like event queue

• Implemented in an array that wraps around.

• Producer threads do work and enqueue result

• Consumer threads dequeue results and perform 
work on them.

• Must synchronize access to the queue.

Attempt 1
class Buffer<E> {
  E[] array = (E[])new Object[SIZE];
  … // front, back fields, isEmpty, isFull methods
  synchronized void enqueue(E elt) {
    if(isFull())
      ???
    else 
      … add to array and adjust back …
  }
  synchronized E dequeue() {
    if(isEmpty()) {
      ???
    else
      … take from array and adjust front …
  }
}

Waiting

• enqueue to full buffer should not raise 
exception
• Wait until there is room

• dequeue from empty buffer should not raise 
exception
• Wait until there is data

• Bad approach is “spin lock”

What we want ...

• Thread should wait until has needed resources 
• Release lock and wait to be notified

• Needs operating systems support

• “Condition variable” that informs waiters when 
conditions have changed.

• See BoundedBuffer.java 
• uses “this” as condition variable



Once Again:  Use Existing 
Classes!

• Java libraries contain thread-safe data 
structures.
• See java.util.concurrent.BlockingQueue<E> interface

• ArrayBlockingQueue

• LinkedBlockingQueue

• ConcurrentHashMap

• Vector

Concurrency Summary
• Access to shared resources introduces new 

kinds of bugs
• Data races

• Deadlocks

• Requires synchronization
• Locks for mutual exclusion

• Condition variables for signaling others

• Guidelines for use help avoid common pitfalls

• Getting shared-memory correct is hard!
• But other models (e.g., message passing) not a panacea


