Lecture 23:
More Parallel Programming

CS 62
Spring 2015
Kim Bruce & America Chambers

Some slides based on those from Dan Grossman,
U. of Washington

INEFFECTIVE SORTS

DEFINE. HALPHEARTEDMERGESORT (LisT):
IF LENGH(LIST) < 2:
RETORN LST
PIVOT = INT (LENGTH(LIST) / 2)
A = HALFHEARTEDMERGE SORT (LIST| [:leflg
B = HALFHEARTEDMERGE SORT (UST [PvOT:]
/1 oMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTIMIZED BOGOSORT
/1 RONS IN O(N LoGN)
FOR N FROM 1. TO LOG(LENGH(LIST)):
SHUFFLE(LiST):
IF I5S0RTED (LIST):
REORN LisT
RETURN “KERNEL PAGE FRULT (ERROR (ODE: 2)°

DEFINE JOBINTERMEW QUICKSORT (LIST):
0K 50 You CHOOSE. A PV
THEN DIVIDE THE LIST IN HALF
FOR EACH HALF:
(HECX To SEE IF ITS SORED
NO WAIT ITDOESN'T MATTER
COMPRRE EACH ELEMENT To THE PIVOT
THE BIGGER ONES GO INANBJ LIST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 15 LIST B
PUT THE BIG ONES INTO UST B
NOW TAKE THE SECOND LIST
CALL IT UST, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATH ALL THAT
ITJUST RECURSMELY CAUS ITSELF
ONTIL BOTH USTS ARE EMPTY
RIGHT?
NOT" EMPTY, BUT YOU KNOW WHAT T MEAN
AM I ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(UsT):
IF [SSORTED (LiST):
REURN LiST
FOR N FROM 1 To 10000:
PINOT =RANDOM(0, LENGTH(LIT))
LT = LsT [PNOT:]+ LISTL :PVOT]
IF I8S0RTED(LST):
RETURN LIST
IF ISSORTED(LST):
RETURN UST:
IF 1S50RTED(LIST): //THIS CAN'T BE HAPPENING
RETORN LIST
IF ISSORTED (LIST)2 // COME ON COME ON
RERN UST
/I OH TEEZ
/I TV GONNA BE IN 50 MUCH TROUBLE
ust=L]
SYSTEM(“SHUTDOWN -H +5")
SYSTEM (“RM -RF /")
SYSTEM (“RM -RF ~/*")
SYSTEM("RM -RF /")
SYSTEM('RD /5 /Q CA*") //PORTRBILTY
RETURN [1,2,3,4,5]

To Use Library

e Create a ForkJoinPool

e Instead of subclass Thread, subclass Recursive Task<V>
e Opverride compute, rather than run

e Return answer from compute rather than instance vble
e Call fork instead of start

e Call join that returns answer

e To optimize, call compute instead of fork (ruther than
run)

Getting Good Results

* Documentation recommends 100-50000 basic
ops in each piece of program

e Library needs to warm up, like rest of java, to

see good results

Data Parallel Operations

* Maps

e apply function to all elements of data structure,
producing new structure (no reductions)

e Example:
o ParallelVectorAdd

Maps & Reduce

* Google MapReduce is key framework in
search.

e Hadoop is open source version

e Idea: Perform maps and reduces using many
computers
e System distributes data and manages fault-tolerance

e Programmer writes code to map one element and reduce
elts for combined result.

e Separates how to do recursive divide and conquer from
actual computation to be performed.

¢ Lifted from functional programming!

Analyzing Parallel Algos

e Must be correct & efficient

e Correctness obvious so far

e Efficiency
e Want asymptotic bounds (big-O)
e Analyze with any number of processors

e ForkJoin framework guarantees get expected run-time
performance asymptotically optimal for given # of
processors

e We’'ll assume that!

Work & Span

 Let Tp be running time if there are P processors

* Two key measures of run-time for fork-join

e Work: How long would it take 1 processor? T,
¢ Just sequentialize all the recursive forking

e Span: How long would it take an infinite # of processors?
e Look for longest dependence chain
e O(og n) for summing as no advantage with > n/2 processors

¢ Called “critical path length”

Program Graph

* Program using fork and join can be seen as

directed acyclic graph (DAG).

Fork/Join: Divide & Conquer

e Basic pattern of our divide & conquer:

./\

* Nodes: pieces of work
divid
* Edges: dependencies - source must finish before start 2N 7N e
destination VANV VAN
fork base cases
o7
/ * Fork command finishes node and makes two edges out: NSNS NSNS ,
7N ® New thread & continuation of old AN /\ /\ - cf’e”;?l'{‘se
N/
¢ Join ends node & makes new node w/ 2 edges coming in
\
—join Often much more complex!
Performance Measuring Speed-Up

e Work =T, = sum of run-time of all nodes in DAG

e Any “topological” sort is legal execution

e Span =T.. = sum of run-time of all nodes on most
expensive path in DAG
* Costs are all on nodes, not edges.

e With unlimited processors can do everything that is ready,
but still have to wait for earlier results.

e Speed-up on P processors = T,/Tp

e If speed-up on P processors is P for all P, say
have perfect speed-up

¢ Goal -- but rarely achieve except in simplest cases.
e Parallelism is max possible speed-up, T./T-
¢ At some point, adding processors won’t help

e Depends purely on span

