
Lecture 23:   
More Parallel Programming

CS 62
Spring 2015

Kim Bruce & America Chambers

Some slides based on those from Dan Grossman, 
U. of Washington

To Use Library

• Create a ForkJoinPool

• Instead of subclass Thread, subclass RecursiveTask<V>

• Override compute, rather than run

• Return answer from compute rather than instance vble

• Call fork instead of start

• Call join that returns answer

• To optimize, call compute instead of fork (rather than 
run)

Getting Good Results

• Documentation recommends 100-50000 basic 
ops in each piece of program

• Library needs to warm up, like rest of java, to 
see good results



Data Parallel Operations

• Maps 
• apply function to all elements of data structure, 

producing new structure (no reductions)

• Example:
• ParallelVectorAdd

Maps & Reduce
• Google MapReduce is key framework in 

search.
• Hadoop is open source version

• Idea: Perform maps and reduces using many 
computers
• System distributes data and manages fault-tolerance

• Programmer writes code to map one element and reduce 
elts for combined result.

• Separates how to do recursive divide and conquer from 
actual computation to be performed.
• Lifted from functional programming!

Analyzing Parallel Algos

• Must be correct & efficient
• Correctness obvious so far

• Efficiency
• Want asymptotic bounds (big-O)

• Analyze with any number of processors

• ForkJoin framework guarantees get expected run-time 
performance asymptotically optimal for given # of 
processors

• We’ll assume that!

Work & Span

• Let TP be running time if there are P processors

• Two key measures of run-time for fork-join
• Work:  How long would it take 1 processor?  T1

• Just sequentialize all the recursive forking

• Span: How long would it take an infinite # of processors?
• Look for longest dependence chain

• O(log n) for summing as no advantage with > n/2 processors

• Called “critical path length”



Program Graph

• Program using fork and join can be seen as 
directed acyclic graph (DAG).
• Nodes: pieces of work

• Edges: dependencies - source must finish before start 
destination

•  Fork command finishes node and makes two edges out:
•  New thread & continuation of old

•  Join ends node & makes new node w/ 2 edges coming in

fork

join

Fork/Join: Divide & Conquer

• Basic pattern of our divide & conquer:

base cases

divide 

combine 
results 

Often much more complex!

Performance

• Work = T1 = sum of run-time of all nodes in DAG
• Any “topological” sort is legal execution

• Span = T∞ = sum of run-time of all nodes on most 
expensive path in DAG
• Costs are all on nodes, not edges.

• With unlimited processors can do everything that is ready, 
but still have to wait for earlier results.

Measuring Speed-Up

• Speed-up on P processors = T1/TP

• If speed-up on P processors is P for all P, say 
have perfect speed-up
• Goal -- but rarely achieve except in simplest cases.

• Parallelism is max possible speed-up, T1/T∞
• At some point, adding processors won’t help

• Depends purely on span


