Lecture 20: Parallelism &
Concurrency

CS 62
Spring 2013
Kim Bruce & Kevin Coogan

Some slides based on those from Dan Grossman,

U. of Washington

Splay Tree

e Idea behind splay tree.

¢ Every time find, get, add: or remove an element x, move
it to the root by a series of rotations.

¢ Other elements rotate out of way while maintaining
order.

e Splay means to spread outwards

How to Splay in Words

if x is root, done.

if x is left (or right) child of root,

e rotate it to the root

if x is left child of p, which is left child of g,

e do right rotation about g and then about p to get x to
grandparent position. Continue splaying until at root.

if x is right child of p, which is left child of g,

e rotate left about p and then right about g. Continue
splaying until at root.

Results in moving node to root!

Splay Tree

* Modify tree operations:
e When do add, contains, or get, splay the elt.

¢ When remove an elt, splay its parent.

* Average depth of nodes on path to root cut in
half on average!

e If repeatedly look for same elements, then rise
to top - and found faster!

* Splay code is ugly - but follows ideas given




Example of modified
operation

public boolean contains(E val) {
if (root.isEmptyQ) return false;

BinaryTree<E> possibleLocation = locate(root,val);
if (val.equals(possibleLocation.value()) {

root = possibleLocation;

splay(root);

return true;

} else {
return false;

Parallelism & Concurrency

Parallelism & Concurrency

e Single-processor computers going away:

e Want to use separate processors to speed up computing
by using them in parallel.

e Also have programs on single processor running in
multiple threads. Want to control them so that program
is responsive to user: Concurrency

 Often need concurrent access to data structures (e.g.,
event queue). Need to ensure don’t interfere w/each
other.

History

* Writing correct and efficient multithread code
is more difficult than for single-threaded
(sequential).

* From roughly 1980-2005, desktop computers
got exponentially faster at running sequential
programs

e About twice as fast every 18 months to 2 years




10,000,000

1,000,000

vl
Intel CPU Trends =

: Intel, Wikipedia, K. Oluk

| ]

100,000

10,000

1 i t t " t iy

o i il @ Clock Speed (MHz)
oeo aPower (W)
® Perf/Clock (ILP)

o
1970 1975 1980 1985 1990 1995 2000 2005 2010

More History

* Nobody knows how to continue this
e Increasing clock rate generates too much heat
* Relative cost of memory access is too high

e Can keep making “wires exponentially
smaller” (Moore’s “Law”), so put multiple
processors on the same chip (“multicore”)

* Now double number of cores every 2 years!

What can you do with
multiple cores?

* Run multiple totally different programs at the
same time

e Already do that? Yes, but with time-slicing

e Do multiple things at once in one program
* Our focus — more difficult

* Requires rethinking everything from asymptotic
complexity to how to implement data-structure
operations

Parallelism vs. Concurrency

e Parallelism:

e Use more resources for a faster answer

* Concurrency

¢ Correctly and efficiently allow simultaneous access

* Connection:
e Many programmers use threads for both

e If parallel computations need access to shared resources,
then something needs to manage the concurrency




Analogy

* Typical CSr1 idea:
e Writing a program is like writing a recipe for one cook
who does one thing at a time!
e Parallelism:
e Hire helpers, hand out potatoes and knives
e But not too many chefs or you spend all your time
coordinating (or you'll get hurt!)
* Concurrency:

e Lots of cooks making different things, but only 4 stove
burners

e Want to allow simultaneous access to all 4 burners, but
not cause spills or incorrect burner settings

Models Change

e Model: Shared memory w/explicit threads

* Program on single processor:
¢ One call stack (w/ each stack frame holding local variables)
¢ One program counter (current statement executing)
o Static fields

¢ Objects (created by new) in the heap (nothing to do with
heap data structure)

Multiple Theads/Processors

* New story:

A set of threads, each with its own call stack & program

counter
e No access to another thread’s local variables

¢ Threads can (implicitly) share static fields / objects

e To communicate, write somewhere another thread reads

Shared Memory

Threads, each with own
unshared call stack and current
statement (pc for ‘;b.rogmm Heap for all objects and
counter”) local variables are static fields
numbers/null or heap references




Other Models

* Message-passing:

e Each thread has its own collection of objects.
Communication is via explicit messages; language has
primitives for sending and receiving them.

» Cooks working in separate kitchens, with telephones

e Dataflow:

e Programmers write programs in terms of a DAG and a
node executes after all of its predecessors in the graph

e Cooks wait to be handed results of previous steps

e Data parallelism:

e Have primitives for things like “apply function to every
element of an array in parallel”

Parallel Programming in Java

e Creating a thread:
1. Define a class C extending Thread
* Opverride public void run() method
2. Create object of class C
3. Call that thread’s start method

e Creates new thread and starts executing run method.

* Direct call of run won’t work, as just be a normal method call

o Alternatively, define class implementing Runnable, create
thread w/it as parameter, and send start message

Parallelism Idea

1 T T i
ans0 ansl ans2 ans3

—
e Example: Sum elements of an array

e Use 4 threads, which each sum 1/4 of the array

e Steps:

e Create 4 thread objects, assigning each their portion of
the work

e Call start() on each thread object to actually run it
e Wit for threads to finish

¢ Add together their 4 answers for the final result

(e}

}

int sum(int[] arr){

First Attempt

lass SumThread extends Thread {

int lo, int hi, int[] arr;//fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int 1, int h) { .. }

public void run(){ .. }

What'’s wrong?

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+l)*len/4);
ts[i].start(); // use start not run

}

for(int i=0; i < 4; i++) // combine results
ans += ts[i].ans;

return ans;




Correct Version

class SumThread extends Thread {
int lo, int hi, int[] arr;//fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int 1, int h) { .. }
public void run(){ .. }

}

int sum(int[] arr){

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+l)*len/4);
ts[i].start(); // start not run

}

for(int i=0; i < 4; i++) // combine results
ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

return ans;

} See program ParallelSum

Thread Class Methods

void start(), which calls void run()

void join() -- blocks until receiver thread done

Style called fork/join parallelism

¢ Need try-catch around join as it can throw exception
InterruptedException

* Some memory sharing: lo, hi, arr, ans fields

Later learn how to protect using synchronized.

Actually not so great.

e If do timing, it’s slower than sequential!!

e Want code to be reusable and efficient as core
count grows.

e At minimum, make #threads a parameter.

* Want to effectively use processors available
now

* Not being used by other programs

e Can change while your threads running

Problem

* Suppose 4 processors on computer

 Suppose have problem of size n

e can solve w/3 processors each taking time t on n/3 elts.

e Suppose linear in size of problem.

e Tiy to use 4 threads, but one processor busy playing
music.

e First 3 threads run, but 4th waits.
o First 3 threads scheduled & take time (n/4)/(n/3)*t = 3/4 t
o After 1st 3 finish, run 4th & takes another 3/4 t

o Total time 1.5 * t , runs 50% slower than with 3 threads!!!




