Lecture 19:
Binary Search & Splay Trees

CS 62
Spring 2015
Kim Bruce & America Chambers

Exam Monday

e In class: 50 minutes
e Sample Exams on-line
* Covers everything through Splay trees

e Studying essential
¢ Do form study groups
e Do problems from sample exams

¢ Do problems from text

Assignment

* Work first on World & Species classes
e Need JUnit for both and turn in World

e Each creature keeps a reference to its species so it can
follow the program.

e Moves hop, left, right, and infect use up turn

e if’s and goto are free

BST

* A binary tree is a binary search tree iff
e it is empty or

e if the value of every node is both greater than or equal to
every value in its left subtree and less than or equal to
every value in its right subtree.

Implementation

¢ Focus on trickiest methods:
e add, get, & remove

e protected methods: locate, predecessor, and removeTop

/I @pre root and value are non-null
[/ @return: 1 - existing tree node with the desired value, or
1 2 - the node to which value should be added
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {
E rootValue = root.value();
BinaryTree<E> child;
if (rootValue.equals(value)) return root; // found at root
// look left if less-than, right if greater-than
if (Cordering.compare(rootValue,value) < @) {
child = root.rightQ);
} else {
child = root.leftQ);
}
// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) {
return root;
} else {
return locate(child, value);

3

protected BinaryTree<E> predecessor(BinaryTree<E> root) {
BinaryTree<E> result = root.left();
while (!result.right().isEmpty()) {
result = result.rightQ);
}

return result;

}

protected BinaryTree<E> successor(BinaryTree<E> root) {
BinaryTree<E> result = root.right();
while (!result.left().isEmpty()) {
result = result.left(Q);
}

return result;

public void add(E value) {
BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
// add value to binary search tree
// if there's no root, create value at root
if (root.isEmpty()) {
root = newNode;
} else {
BinaryTree<E> insertlLocation = locate(root,value);
E nodeValue = insertlLocation.value();
// The location returned is the successor or predecessor
// of the to-be-inserted value
if (ordering.compare(nodeValue,value) < @) {
insertLocation.setRight(newNode);
} else {
if (linsertLocation.left().isEmpty()) {
// if value is in tree, we insert just before
predecessor(insertlLocation).setRight(newNode);
} else {
insertLocation.setLeft(newNode);
}
1
}

count++;

Remove node

X
* Remove topmost
node.
* Easy cases:
¢ no left subtree, or no

right subtree -- easy, they
are new tree

e left child has no right
subtree a A a

(General Case

e Left Child has a right subtree:

predecessor(x)

Remove method

* Locate element to be deleted
* RemoveTop of node rooted at element

* Hook up resulting tree as child of elt’s parent.

e O(h), where h is height of tree.
e O(b) to find,
¢ Could be another O(h) to find predecessor

 Constant to patch back together.

Complexity

* Add, get, contains, remove

e Proportional to height of tree

* Can we guarantee O(log n)?
¢ Only if we can keep them balanced!!

e Special binary search trees that stay balanced:
e AVL trees
e Red-black trees

e We'll do splay tree, which doesn’t guarantee balance
¢ but guarantees good average behavior

e easier to understand than alternatives

¢ better than others if likely to go back to recent nodes

Splay Trees

Rotating Trees

 Key idea: Rotate node higher in tree while
keeping it in order.

y X

40 CINy

Right rotation

A A
AL e AN

Rotating Trees

* Rotate x to root, while maintain BST structure

e All nodes in subtree A go up one level, all in C go down
one level, all in B stay same.

* See code in BinaryTiee

Right rotation

A A
Ab T A

40

Shifting elements toward root

* Move x up two levels w/ two rotations

e If x is left child of a left child ...

Shifting elements toward root

e If x is a right child of a left child.

Symmetric if interchange left and right

Splay Tree

e Idea behind splay tree.

¢ Every time find, get, add: or remove an element x, move
it to the root by a series of rotations.

¢ Other elements rotate out of way while maintaining
order.

e Splay means to spread outwards

