
Lecture 19:
Binary Search & Splay Trees

CS 62
Spring 2015

Kim Bruce & America Chambers

Exam Monday

• In class: 50 minutes

• Sample Exams on-line

• Covers everything through Splay trees

• Studying essential
• Do form study groups

• Do problems from sample exams

• Do problems from text

Assignment

• Work first on World & Species classes
• Need JUnit for both and turn in World

• Each creature keeps a reference to its species so it can
follow the program.

• Moves hop, left, right, and infect use up turn
• if ’s and goto are free

BST

• A binary tree is a binary search tree iff
• it is empty or

• if the value of every node is both greater than or equal to
every value in its left subtree and less than or equal to
every value in its right subtree.

Implementation

• Focus on trickiest methods:
• add, get, & remove

• protected methods: locate, predecessor, and removeTop

 // @pre root and value are non-null
 // @return: 1 - existing tree node with the desired value, or
 // 2 - the node to which value should be added
 protected BinaryTree<E> locate(BinaryTree<E> root, E value) {
 E rootValue = root.value();
 BinaryTree<E> child;
 if (rootValue.equals(value)) return root; // found at root
 // look left if less-than, right if greater-than
 if (ordering.compare(rootValue,value) < 0) {
 child = root.right();
 } else {
 child = root.left();
 }
 // no child there: not in tree, return this node,
 // else keep searching
 if (child.isEmpty()) {
 return root;
 } else {
 return locate(child, value);
 }
 }

 protected BinaryTree<E> predecessor(BinaryTree<E> root) {
 BinaryTree<E> result = root.left();
 while (!result.right().isEmpty()) {
 result = result.right();
 }
 return result;
 }

 protected BinaryTree<E> successor(BinaryTree<E> root) {
 BinaryTree<E> result = root.right();
 while (!result.left().isEmpty()) {
 result = result.left();
 }
 return result;
 }

 public void add(E value) {
 BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
 // add value to binary search tree
 // if there's no root, create value at root
 if (root.isEmpty()) {
 root = newNode;
 } else {
 BinaryTree<E> insertLocation = locate(root,value);
 E nodeValue = insertLocation.value();
 // The location returned is the successor or predecessor
 // of the to-be-inserted value
 if (ordering.compare(nodeValue,value) < 0) {
 insertLocation.setRight(newNode);
 } else {
 if (!insertLocation.left().isEmpty()) {
 // if value is in tree, we insert just before
 predecessor(insertLocation).setRight(newNode);
 } else {
 insertLocation.setLeft(newNode);
 }
 }
 }
 count++;
 }

Remove node

• Remove topmost
node.

• Easy cases:
• no left subtree, or no

right subtree -- easy, they
are new tree

• left child has no right
subtree

352 Search Trees

(a)

A
B

A

B

(c)

(b)

x x

x

Figure 14.2 The three simple cases of removing a root value from a tree.

3

2

1

2

1

3x

predecessor()x

Figure 14.3 Removing the root of a tree with a rightmost left descendant.

352 Search Trees

(a)

A
B

A

B

(c)

(b)

x x

x

Figure 14.2 The three simple cases of removing a root value from a tree.

3

2

1

2

1

3x

predecessor()x

Figure 14.3 Removing the root of a tree with a rightmost left descendant.

General Case

• Left Child has a right subtree:

352 Search Trees

(a)

A
B

A

B

(c)

(b)

x x

x

Figure 14.2 The three simple cases of removing a root value from a tree.

3

2

1

2

1

3x

predecessor()x

Figure 14.3 Removing the root of a tree with a rightmost left descendant.

Remove method

• Locate element to be deleted

• RemoveTop of node rooted at element

• Hook up resulting tree as child of elt’s parent.

• O(h), where h is height of tree.
• O(h) to find,

• Could be another O(h) to find predecessor

• Constant to patch back together.

Complexity

• Add, get, contains, remove
• Proportional to height of tree

• Can we guarantee O(log n)?
• Only if we can keep them balanced!!

• Special binary search trees that stay balanced:
• AVL trees

• Red-black trees

• We’ll do splay tree, which doesn’t guarantee balance
• but guarantees good average behavior

• easier to understand than alternatives

• better than others if likely to go back to recent nodes

Splay Trees

Rotating Trees

• Key idea: Rotate node higher in tree while
keeping it in order.

14.5 Splay Trees 355

y

Left rotation

Right rotation

BA

C A

B C

y x

x

Figure 14.4 The relation between rotated subtrees.

but in all other ways, the tree remains the same. In particular, there is no
structural effect on the tree above the original location of node y. A left rotation
is precisely the opposite of a right rotation; these operations are inverses of each
other.

The code for rotating a binary tree about a node is a method of the
class. We show, here, ; a similar method performs a left Finally, a right

handed
method!

rotation.

For each rotation accomplished, the nonroot node moves upward by one
level. Making use of this fact, we can now develop an operation to splay a tree
at a particular node. It works as follows:

Rotating Trees

• Rotate x to root, while maintain BST structure
• All nodes in subtree A go up one level, all in C go down

one level, all in B stay same.

• See code in BinaryTree
14.5 Splay Trees 355

y

Left rotation

Right rotation

BA

C A

B C

y x

x

Figure 14.4 The relation between rotated subtrees.

but in all other ways, the tree remains the same. In particular, there is no
structural effect on the tree above the original location of node y. A left rotation
is precisely the opposite of a right rotation; these operations are inverses of each
other.

The code for rotating a binary tree about a node is a method of the
class. We show, here, ; a similar method performs a left Finally, a right

handed
method!

rotation.

For each rotation accomplished, the nonroot node moves upward by one
level. Making use of this fact, we can now develop an operation to splay a tree
at a particular node. It works as follows:

Shifting elements toward root
• Move x up two levels w/ two rotations

• If x is left child of a left child ...356 Search Trees

(a)

(b)

g

p

x

x

p x

g

g

x

p

g

x

p

g

p

x

g p

Figure 14.5 Two of the rotation pairs used in the splaying operation. The other cases
are mirror images of those shown here.

• If x is the root, we are done.

• If x is a left (or right) child of the root, rotate the tree to the right (or left)
about the root. x becomes the root and we are done.

• If x is the left child of its parent p, which is, in turn, the left child of its
grandparent g, rotate right about g, followed by a right rotation about p
(Figure 14.5a). A symmetric pair of rotations is possible if x is a left child
of a left child. After double rotation, continue splay of tree at x with this
new tree.

• If x is the right child of p, which is the left child of g, we rotate left about
p, then right about g (Figure 14.5b). The method is similar if x is the left
child of a right child. Again, continue the splay at x in the new tree.

After the splay has been completed, the node x is located at the root of the
tree. If node x were to be immediately accessed again (a strong possibility),
the tree is clearly optimized to handle this situation. It is not the case that the
tree becomes more balanced (see Figure 14.5a). Clearly, if the tree is splayed at
an extremal value, the tree is likely to be extremely unbalanced. An interesting
feature, however, is that the depth of the nodes on the original path from x to
the root of the tree is, on average, halved. Since the average depth of these

Shifting elements toward root

• If x is a right child of a left child.

356 Search Trees

(a)

(b)

g

p

x

x

p x

g

g

x

p

g

x

p

g

p

x

g p

Figure 14.5 Two of the rotation pairs used in the splaying operation. The other cases
are mirror images of those shown here.

• If x is the root, we are done.

• If x is a left (or right) child of the root, rotate the tree to the right (or left)
about the root. x becomes the root and we are done.

• If x is the left child of its parent p, which is, in turn, the left child of its
grandparent g, rotate right about g, followed by a right rotation about p
(Figure 14.5a). A symmetric pair of rotations is possible if x is a left child
of a left child. After double rotation, continue splay of tree at x with this
new tree.

• If x is the right child of p, which is the left child of g, we rotate left about
p, then right about g (Figure 14.5b). The method is similar if x is the left
child of a right child. Again, continue the splay at x in the new tree.

After the splay has been completed, the node x is located at the root of the
tree. If node x were to be immediately accessed again (a strong possibility),
the tree is clearly optimized to handle this situation. It is not the case that the
tree becomes more balanced (see Figure 14.5a). Clearly, if the tree is splayed at
an extremal value, the tree is likely to be extremely unbalanced. An interesting
feature, however, is that the depth of the nodes on the original path from x to
the root of the tree is, on average, halved. Since the average depth of these

Symmetric if interchange left and right

Splay Tree

• Idea behind splay tree.
• Every time find, get, add: or remove an element x, move

it to the root by a series of rotations.

• Other elements rotate out of way while maintaining
order.

• Splay means to spread outwards

