
Lecture 17: Iterators,
Expression Trees & Array
Representation of Trees

CS 62
Spring 2015

Kim Bruce & America Chambers

Look at BinaryTree.java
Notice leaves are nodes w/null values

Iterators

• Pre-order: root, left subtree, right subtree

• Post-order: left subtree, right subtree, root

• In-order: left subtree, root, right subtree.

in-order

if (!isEmpty()){

 left.inOrder()

 doSomething to this.value()

 right.inOrder()

}

Iterative Iterators -- see code

Parsing Expressions

Representing Expressions

• Represent 3 * 7 + 6 / 2 - (3 + 7) as tree
• Parser builds tree

• Send message to tree to print or evaluate

• Mutual recursion in parser

• Different classes for different kinds of nodes.

• See Parser code

Array Representations of
Trees

Array Representation
• data[0..n-1] can hold values in trees

• left subtree of node i in 2*i+1, right in 2*i+2,

• parent in (i-1)/2

Indices: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 data[]: U O R C M E S - - - P T - - -

Array Representation:
Efficiency

• Tree of height h, takes 2h+1-1 slots, even if only
has O(h) elements
• Bad for long, skinny trees

• Good for full or complete trees.

• Recall complete tree is full except possibly
bottom level and has all leaves at that level in
leftmost positions.

Min-Heap

• Min-Heap H is complete binary tree s.t.
• H is empty, or

• Both of the following hold:
• The value in root position is smallest value in H

• The left and right subtrees of H are also heaps. 
Equivalent to saying parent ≤ both left and right children

• Excellent implementation for priority queue
• Dequeue elements w/lowest priority values before higher

