
Lecture 11:  More Linked Lists
CS 62

Spring 2015
Kim Bruce & America Chambers

Linked List Algos

• Constructor

• addFirst, removeFirst

• get(i)

• indexOf(e)

• add(i,o)

• remove(e), remove(i)

• iterator
What is worst-case complexity of each?

Variants of List

• If add a lot at end, add “tail” pointer
• Makes adding at end faster

• But harder to delete at end

• More special cases -- e.g. add first when empty

• See implementation when look at queues.

• Circular lists
• Keep reference/pointer to end rather than beginning

• What is the difference between adding to end & beginning?

• getFirst vs getLast?

• removeLast still hard!

• How do you know when at end of list if searching?

Doubly-Linked List

• Doubly Linked Lists
• Previous pointer as well as next

• Useful if need to traverse in both directions

• Provided by java.util.LinkedList (but we’re using 
DoublyLinkedList from Bailey)

• Must change twice as many links when adding or 
deleting!

• Our class has head and tail pointers, 
• Doubly-linked lists often represented as circular!



Expectations

• You should be able to write any of these 
methods in any variant.

• Midterms always include such a question!

Stack

• Interface Stack<E> {
• void push(E value)

• E pop()

• E peek()

• Example: Trays in cafeteria

• Last In - First Out (LIFO)

Stack Applications

• Run-time stack:
• See sum and quicksort programs

• Backtracking
• Solving Maze

• Evaluating expression in postfix form:
• (52 - ((5 + 7) * 4)  ⇒ 52 5 7 +  4 * - ⇒ 4

• Tools to parse programs

Stack Implementations
• ArrayList:  

• Which end should be head?

• How complex for push, pop, peek?

• SinglyLinkedList:  
• Which end should be head?

• How complex for push, pop, peek?

• Space differences?
• What if there are several stacks?

• java.util.Stack based on Vector - don’t use!

Why not doubly-linked?


