Lecture 11: More Linked Lists

CS 62
Spring 2015
Kim Bruce & America Chambers

Linked List Algos

e Constructor

addFirst, removeFirst
get(®

indexOf(e)

add(,o)

remove(e), remove(i)

e jterator

What is worst-case complexity of each?

Variants of List

e If add a lot at end, add “tail” pointer
* Makes adding at end faster
* But harder to delete at end
* More special cases - e.g. add first when empty

¢ See implementation when look at queues.

e Circular lists

e Keep reference/pointer to end rather than beginning
e What is the difference between adding to end & beginning?
o getFirst vs getLast?
e removeLast still hard!

¢ How do you know when at end of list if searching?

Doubly-Linked List

* Doubly Linked Lists

Previous pointer as well as next
Useful if need to traverse in both directions

Provided by java.util.LinkedList (but we’re using
DoublyLinkedList from Bailey)

Must change twice as many links when adding or
deleting!

Odur class has head and tail pointers,

e Doubly-linked lists often represented as circular!




Expectations

* You should be able to write any of these
methods in any variant.

* Midterms always include such a question!

Stack

e Interface Stack<E> {
¢ void push(E value)

e E pop0 -
¢ E peekQ
* Example: Trays in cafeteria
¢ N7 v

e Last In - First Out (LIFO)

Stack Applications

¢ Run-time stack:

 See sum and quicksort programs

* Backtracking
e Solving Maze

e Evaluating expression in postfix form:

e 52-(G+7D*4) =5257+ 4% -=4

* Tools to parse programs

Stack Implementations

e ArrayList:
e Which end should be head?
¢ How complex for push, pop, peek?

e SinglyLinkedList: Why not doubly-linked?
¢ Which end should be head?
e How complex for push, pop, peek?

* Space differences?

e What if there are several stacks?

* java.util.Stack based on Vector - don’t use!




