Lecture 10: Linked Lists

FileIO

e File class:
e represents a file or directory
e doesn’t have to exist

¢ use the File.separator so that it doesn’t matter what

CS 62 system we run on.
Spring 2015 e Some methods that may be helpful:
Kim Bruce & America Chambers . delete) « isDirectory0
o existsQ o listFilesQ
o createNewFileQ * mkdir()
o isFileQ ¢ renameTo(...)
More FileIO Exceptions

e Use the BufferedReader and Print Writer
classes for reading and writing to files.

e Have lots of useful methods

¢ PrintWriter out =
new PrintWriter(new FileWriter(...));

* BufferedReader in =
new BufferedReader(new FileReader(...));

* Many methods/constructors throw exceptions

e public String readLine() throws IOException

e Handle exceptions by try-catch construct

e tryf
... myFile.readLine() ...
} catch TOException ex) {
code to be executed if exception raised

}




Linked Lists

* Alternate implementation of lists

* Trade-offs in complexity
e With ArrayList expensive to add at beginning of list
e Linked lists inexpensive to add early

e However, slow to access ith element.

Linked List

e Composed of Nodes
e Think of as pop-beads
¢ See code in structures library
¢ From documentation page!
e See code in SinglyLinkedList
o Buailey - not std fava!
e keep track of head and size
¢ Extends AbstractList - look at on own!

e Vector also extends AbstractList

e Also see SinglyLinkedListIterator

Linked List Algos

e Constructor

addFirst, removeFirst

get(®
indexOf(e)
add(,0)

remove(e), remove(i)

* iterator
What is worst-case complexity of each?

Variants of List

e If add a lot at end, add “tail” pointer
e Makes adding at end faster
¢ But harder to delete at end
e More special cases -- e.g. add first when empty

¢ See implementation when look at queues.

e Circular lists

e Keep reference/pointer to end rather than beginning
e What is the difference between adding to end & beginning?
o getFirst vs getLast?
e removeLast still hard!

¢ How do you know when at end of list if searching?




Doubly-Linked List Expectations

* Doubly Linked Lists

* Previous pointer as well as next

e Useful if need to traverse in both directions e You should be able to write any o f these

e Provided by java.util.LinkedList (but we’re using methods in any variant

DoublyLinkedList from Bailey)

e Must change twice as many links when adding or e Midterms always include such a question!
deleting!

 Our class has head and tail pointers,

¢ Doubly-linked lists often represented as circular!




