
Lecture 1: Overview & Java
CS 62

Spring 2015
Kim Bruce & America Chambers

TAs: Christina Tong, Jennifer Nguyen, Laura Pandori,
Maria Martinez, Sean Zhu & Michael Diamond

Course web page: http://www.cs.pomona.edu/classes/cs062

1

Why CS 62?

• How to implement algorithms and data
structures in Java & C++.

• How to design large programs (in object-
oriented style) so that it is easy to modify
them.

• How to analyze complexity of alternative
implementations of problems.

2

Sample Problems
• Find the shortest path from Claremont to

Chicago on interstate system
• (and do it efficiently)

• Schedule final exams so there are no conflicts.

• Design and implement a scientific calculator.

• Design and implement a simulator that lets you
study traffic flow in a city or airport.

• Design parallel algorithms to run on multicore
computers

3

Your Responsibilities

• Skim reading in advance of lecture.

• After lecture, review lecture notes, sample
code, and text until well understood.

• Come to labs prepared.

• Don’t remain confused. Ask faculty or TAs.

• Follow academic integrity guidelines.

4

Assignments

• Lab work:
• Learn tools & prep work for weekly assignments

• Lab attendance mandatory!

• Weekly assignment is separate
• Programs generally due on Sunday nights.

• See late policy on syllabus: 3n% per day late

• Daily homework
• Not collected, but often on regular Friday quizzes

• No quiz this Friday.

5

Texts

• Java Structures, √7 edition, by Duane Bailey
• available on-line for free

• C++ for Java Programmers, by Mark Allen
Weiss
• highly recommended for last 1/3 of course

• Not at book store: buy on-line

6

Slides

• Will generally be available before class
• with code, where applicable

• Designed for class presentation, not for
complete notes

• Will need to take notes (perhaps on slides)

• No laptops or other electronics open in class
• If that is problem, come see me.

7

Prerequisite

• One of:
• CS 51 at Pomona or CMC (not CS 5 from HMC!)

• AP CS A exam with score of 4 or 5

• Fluent in Java and object-oriented programming &
permission of instructors

• Come see one of faculty if any questions

• Assume comfortable with classes & objects,
recursion, multi-dimensional arrays, etc. in Java

8

See syllabus for other
important information!

9

Object-Oriented Design

• Objects are building blocks.

• Program is collection of interacting objects.

• Objects cooperate to compute solution.

• Objects communicate via sending messages.

10

Objects

• Model physical and conceptual world, as well as
processes.

• Objects have:
• Properties, e.g. color, size, manufacturer, ...

• Capabilities, e.g. drive, stop, admit passenger

• Objects responsible for knowing how to
perform actions.
• Commands: change state

• Queries: response based on properties

11

More Objects

• Properties typically implemented as “fields” or
“instance variables”
• Affect how object reacts to messages

• Can be
• Attributes, e.g., color

• Components, e.g., doors

• Associations, e.g., driver

• Capabilities as “methods”
• Invoked by sending messages

12

Quick Java Review

13

Classes & Interfaces

• Interfaces
• Provide info on publicly available methods of objects

• Classes are templates for objects
• Constructors generate new distinct objects

• new Car(“Toyota”,...)

• Specify all fields and methods – public and non-public

• May be used as basis for more refined classes via
inheritance

14

All Classes Specialize
“Object”

• Object class has methods:
• public boolean equals(Object other)

• Default behavior returns true only if same object

• public String toString()
• Returns string representation of object - default is hexadecimal

• Typically want to override to be more useful

• public int hashCode()
• Unique identifier defined s.t. if a.equals(b) then a, b have same

hashCode.

• Cover in later chapter of text.

15

Enum Types

• Example:
• enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES};

• Operations:
• int compareTo(Suit other)

• String toString()

• int ordinal() starts with 0, not 1

• static Suit valueOf(String name)

• static Suit[] values() returns array of all values

16

Card Deck Examples

• CardInterface -- interface

• AbsCard
• abstract class, implements CardInterface

• Card extends AbsCard

• OtherCard extends AbsCard

• Deck
• Class holding array of cards

} alternate implementations

17

Java Keywords

• Abstract class -- can’t be instantiated
• usually some methods missing

• Information hiding qualifiers:
• public

• private

• protected

• Static -- copy associated with class, not objects

• Final -- only assigned to once
• in its declaration or constructor

18

Interfaces &Inheritance
• Class implements interface if supports all

methods defined in interface

• Interface can extend another by adding methods
• If A extends B and x has type A, then also has type B

• One class can extend another
• inherits fields and methods

• can override existing methods, add new ones

• instanceof & casts
• Ex: in Ratio class later

19

