
CS136 Midterm 3/10/04

1

Computer Science 136

Bruce - Spring ‘04

Midterm Examination

March 10, 2004

 Question Points Score

 1 12 ____

 2 10 ____

 3 11 ____

 4 18 ____

 5 8 ____

 TOTAL 59 ____

Your name (Please print)

I have neither given nor received aid on this examination.

 (sign here)

CS136 Midterm 3/10/04

2

1. In the following problem you are to design an interface and class for a data structure
which represents sets of characters. As usual, no repeated elements are allowed in
these sets. Thus the collection: 'a', 'e', 'i', 'o', and 'u' is a legal set, but 'a', 'e', 'a' is not.
This data structure will have two methods:

 i. insert(char newChar) is a procedure which adds newChar to the set.
 ii. contains(char findChar) is a function which returns a boolean value which

indicates if findChar is an element of the set.

a. Please write a legal Java interface for this data structure. Be sure to include

preconditions and postconditions for all methods. Please name your interface
CharSetInterface.

b. Suppose we decide to implement CharSetInterface by a class in which a

singly-linked list holds all of the elements in order (i.e. characters whose unicode is
smaller come before those with larger unicode). Please write down the definition of
this class. This should be a full and legal class definition except you do not need to
include any of the method bodies (just include "{...}" where the code would usually
go). Do include instance variable declarations and don't forget to include a
constructor which creates an empty list. You need not repeat the pre and post-
conditions from the interface. Do not forget to provide qualifiers such as public and
protected.

CS136 Midterm 3/10/04

3

c. If CharacterSet is implemented as given in b. above, what would the worst-case time
complexity be of the operation insert if the set has n elements? (Use big-O notation.)

d. Suppose instead of representing the set by a linked list, we design an alternative

implementation in which the set is represented by an array, rep, of booleans with
subscripts ranging from 0 to 65535 (these represent the codes for all of the characters
representable in unicode). For example, the unicode for 'a' is 97. Then 'a' is in the set
if and only if rep[97] is true. What is the worst-case complexity of insert with this
representation. (You may assume there is a constant-time function available which
computes the unicode of a given letter.)

e. What might be the disadvantage of using the array representation compared to the

linked list representation for this particular application.

CS136 Midterm 3/10/04

4

2. A circular doubly linked list has instance variables:
 protected DoublyLinkedListElement head;

 protected int count;
 A circular doubly linked list with four elements is represented as in the picture below:

 head
 This question revolves around the implementation of the method to remove the last

element:
 // pre: !isEmpty()

 // post: returns & removes value from last elt of list

 public Object removeLast()

 a. What special case(s) must you worry about in writing this method?

 b. Please write the Java code for this method. Write your answer on the next page.

You may not use removeFirst (or any other method of DoublyLinkedList)
in your code. Do not forget to update count. (Recall that DoublyLinkedListElement
has methods previous(), next(), value(), setPrevious(DoublyLinkedListElement prev),
and setNext(DoublyLinkedListElement nextOne).)

CS136 Midterm 3/10/04

5

3. The following is a recursive method to remove duplicates that might be added to the
DoublyLinkedList class:

 // post: The list from first to end contains no
duplicates

 protected removeDups(DoublyLinkedListElement first) {

 if (first != null) {

 Object firstValue = first.value(); // value in first

 DoublyLinkedListElement finger = first.next();

 while (finger != null){

 //remove all occurrences of firstValue

 if (finger.value().equals(firstValue)){

 ... // remove finger in constant time -
omitted.

 }

 finger = finger.next();

 }

 if (first.next() == null) {

 last = first;

 } else {

 removeDups(first.next());

 }

 }

 }

 This recursive function would normally be called by a public method like:
 public removeAllDups(){

 removeDups(head);

 }

CS136 Midterm 3/10/04

6

a. What two things must one prove in order to prove that removeDups meets its
postcondition? You need not give the proof itself, just state the two statements which
must be proven. Be sure to state any hypotheses which are allowed to be assumed for
the proof. Note: The two things you list must be statements about this particular
method, not general statements about induction!

 b. What is the complexity of removeDups(first) if there are n elements in the

list from first to the last element? Use big-O notation. Justify your answer.

 c. There are faster algorithms to remove duplicates if the elements of the lists are of

type Comparable (can be compared) and we don’t care whether the order of the
elements is changed by the algorithm. Please describe a more efficient (in terms of
big-O) algorithm to remove duplicates (a paragraph telling what must be done is
fine). Provide it’s big-O complexity and justify your answer.

CS136 Midterm 3/10/04

7

4. Short answers:
a. Suppose we wish to add a method to our various linked list implementations to

concatenate (glue together) two lists of size n and m, respectively. Executing
list1.concatenate(list2) should result in changing list1 to be the concatenation of
list1 and list2. The list referred to by list2 may be destroyed as a result of the
operation.

 What is the worst case complexity (use big-O notation) of the best algorithm to

accomplish this for the following implementations of the list. Please explain very
briefly your answer for each. [Note: A method that takes a parameter of the
same type as the class has access to the instance variables of the parameter.]

 i. Both are singly-linked with references only to the heads of the lists:

 ii. Both are circular singly-linked with references only to the tails of the lists:

 iii. Both are doubly-linked with references to both the heads and tails of the lists:

b. Consider the (non-circular) singly-linked and doubly-linked list and vector

implementations of the List interface that were discussed in the text and class.
Please provide the worst-case complexity of the following operations. Express
your answer using big-"O" notation.

Complexity Singly-

linked list
Doubly-linked
list

Vector

addFirst
contains
removeLast

CS136 Midterm 3/10/04

8

c. It was indicated in class that one can think of pre-conditions and post-conditions as
a contract between the supplier of the method and the user (caller) of the method.
Please explain briefly this analogy.

d. What are the worst-case and average-case times to insert an element at the end of
a Vector? Please explain why there is a difference between the two. (Assume
that the implementation uses the doubling strategy.)

CS136 Midterm 3/10/04

9

5a. Please write the worst-case time complexity of the following sorts. The options are:
 O(1), O(log n), O(n), O(n log n), O(n2), O(n3), O(2n).
 i. Insertion sort

 ii. Selection sort:

 iii. Merge sort

b. Describe an important case in which an insertion sort might be more appropriate (and
efficient) than a merge sort. You may assume the array to be sorted is large.

