Lecture 8: Strong Induction & Sorting Fall 2016

Kim Bruce & Peter Mawhorter

Assignment 1

- Grading is not quite done.
- We'll try to provide feedback before Sunday.
- Assignment 2 is due on Sunday.

Quiz #2

You do not have to do a proof.

For Today

- Selection sort proof
- Strong induction
- Merge sort

Selection sort progress.

Correctness

Can we prove that our algorithm works? (use induction)

What must be true after each step?

Selection sort recursion.

Complexity

Can we prove that our algorithm works *quickly*?

How many operations does each indexOfSmallest take?

$$\sum_{i=1}^{n} i \to \frac{n(n+1)}{2}$$

Strong Induction

- Instead of just assuming P(k) and proving P(k+1)...
- Assume P(k) for all $0 \le k < n$ to prove P(n)
 - Use when just the previous case is not enough.

Divide-and-Conquer

- Some problems are tough.
 - But maybe we can divide them into simpler problems.
 - ...and keep going until all we have are trivial problems?
 - Now we just need to combine the solutions.
- Sounds like a job for recursion!

Fast Exponentiation

- fastPower(x, n) calculates x^n :
 - if n == 0, return 1
 - if n is even, return fastPower(x * x, n/2)
 - if n is odd, return $x \times fastPower(x, n-1)$
- Proof by induction on *n*:
 - Base case: n == 0
 - Assumption: assume fastPower(x, k) is x^k for all $0 \le k < n$.
 - Inductive case: show fastPower(x, n) is x^n

Mergesort Steps

- 1. Divide into two halves.
- 2. Sort each half.
- 3. Merge the results and return.

Time Complexity

Use strong induction.

Correctness

Use strong induction.

Summary

- MergeSort makes f(n) = 2f(n/2) + n comparisons on an array of size n
- Strong induction $\rightarrow f(n)$ is in $O(n \log_2 n)$