Lecture 6: Complexity
Fall 2016

Kim Bruce & Peter Mawhorter

Assignment this Week

» Weak Al / Natural Language Processing

= Generate text by counting word pairs.

= ArrayList of Associations of String (words) and Integer (count of that
pair).

Lab this Week

« Timing ArrayList operations

= Encourage working in pairs

= Stopwatch class: start(), stop(), getTime(), reset()
« Java has just-in-time compiler

= Must “warm-up” before you get accurate timing.

= What can mess up timing?

« Uses Vector from Bailey rather than ArrayList for control
over growth policy.

Order of Magnitude

« Definition: A function g(n) is in O(f(n)) if there exist two
constants C and k such that |1g(n)| < Clf(n)| for all n > k.

Operations

Order of Magnitude

fwXn g « Used to measure time and space complexity of algorithms
//:/ f(n)=n
’ and data structures.

« Examples:
= 2n+1 is O(n)
= 112 + 1000012 + 10000 is O(1°)
- 21+ 117 is O(27)

o Most common:

0 - k
= O(1) for any constant

lg(n)| <Clf(n)| wheren >k » O(log, 1), O(n), o(n log, 1), ..., O2"), O(nt)

Comparing Orders of Magnitude

« If processing 5 elements takes 1 second, 50 will

take:
O Time (approx.)
O(log, n) <2.5seconds
On) <10 seconds
- O(n?) <100 seconds
Sleg), 001}
Elements O2" <1 million years

Common examples diverge quickly. What about 500 elements?

Adding to ArrayList EnsureCapacity

_ + What if only increase in size by 1 each
 Suppose 1 elements in ArrayList and add

time?
1 = Adding n elements one at a time to end:
« If space: o Total cost of copying =1+2+3+ ...+ (n-1) = n(n-1)/2
= Add to end is O(1) o This is in O(n?)
» Add to beginning is O(n) = Average cost is O(n)
« Otherwise: « What if double size each time?

» What is the cost of ensureCapacity? - Adding n elements at end:

. o Total cost of copying =1+2+4+ ... +n/2=n-1 - O(n)
= O(n) because n elements in array pyimg

= Average cost is O(1) but it’s “lumpy”

ArrayList Ops Sums

« 1+2+ ...+ 1 comes up often in
complexity

« Worst case:

= O(1): size, isEmpty, get, set)))
= E.g., selection and insertion sorts

s 1+2+.. +n=n(n+)/2
= Similarly, 1 +2 + ... (n-1) = (n-1)n/2

= Proof by induction:

= O(n): remove, add

« Add to end is O(1) on
average.

Selection Sort (helper)
Proof by induction

* Return index of smallest number in array between
* startIndex and array.length.

+ Induction is key to understanding recursion * PRE: startindex must be valid index for array
* POST: returns index of smallest value in range
= It's like splitting a program into functions and writing one at a N , ,
. int indexOfSmallest (int[] array, int startIndex) ({
tlme- int smallIndex = startIndex;
i X for (int i = startIndex+l; i < array.length; i++) {
° TO prove P(Z) for a]l 1 2 0 if (array[i] < array[smalllIndex]) ({
smallIndex = 1i;
1. Prove that P(0). .
2. Let k>0 and prove that P(k+1) if P(k) , metumm smaliinde;

Selection Sort Analysis

/*
* PRE: startIndex must be valid index for array - -
* POST: Array is sorted from startiIndex -- array.length. * Count number Of Comparlsons Of elts m array
*/ . .
int selectionSort(int[] array, int startIndex) { - AH Compal'lsons aremlndeXOfsmalleSt
if (startInd < .1 th - 1) | .
* //Sfizd I;mj}l{lesirzzmeiigin rest of array o At most n-1if startIndex ... array.length has n elements.
int smallest = indexOfSmallest (array, startlIndex)

// move smallest to index startIndex (71-1).
swap (array, smallest, startIndex);
o Base case: k=0 or k =1: no comparisons
// sort everything after startIndex
selectionSort (array, startIndex + 1); o Assume true for startIndex ... array.length has k-1 elements

) o Show for k elements.

= Prove # of comparisons in selection sort for array of size nis1+2+ ...

