Lecture 5: ArrayList
implementation & Complexity

CS 62
Fall 2015
Kim Bruce & Michael Bannister

PostIt App

* Generated javadoc for fun

* See how ArrayList used in methods for
PostItApplication

¢ findWindowlInList, moveToTop, remove Window

¢ Used in mouse-event-handling methods

ArrayList

* Not using Bailey implementation

e see code on-line for implementation by Tomassia &
Goodrich

e Standard Java libraries have lots of extra
methods not in our implementation:
e Many involve working on other collections
e irrelevant for us at this point.

e addAll, clear, contains, containsAll, listIterator,
removeAll, replaceAll, retainAll, sort, spliterator, sublist,
toArray

Back to ArrayList

e Interface is IndexList<E>

e See ArrayIndexList<E>
e Similar to ArrayList
¢ Instance variables:
e elts: array instance variable,
o eltsFilled: number of slots filled.
e Creating new ArrayList is weird
e recall can’t construct array of variable type!

e Create array of Object, but coerce to believe array of E.

ArrayList Implementation

* Some operations very cheap:

e size, isSEmpty, get, set take constant time (no search)

* Others more expensive

Adding Elts in Slot i

e Easy if there is space:
e At end, just add it

e If before end, must move all elements at i and beyond to
right before inserting

o Delete similar

e What if run out of space

¢ Create new array twice as big and copy old elements over
before adding.

* How expensive is this?

Complexity of Operations

e Count number of compares and/or moves to
accomplish operation.

* Rather than keeping an exact count of
operations, use order of magnitude count of
complexity.

e Ignore differences which are constant

* e.g, treat n and n/2 as same order of magnitude.

e Same with 2 n?> and 1000 n2

Order of Magnitude

¢ Definition: We say that g) is O(f(n) if there
exist two constants C and k such that

lg(m)| <= C Ifm)| for all n > k.
e Examples: 2n+1, n3-n2+83, 20+n2

e Used to measure time and space complexity of
algorithms on data structures of size n.

e Most common are

Use simplest version in

e O(D) - for any constant oc¢.)
* O(log n), O(n), O(n log n), O(n?), ..., O(2n)

Complexity

Comparing Orders of Magnitude

100 zn | e Suppose have ops w/complexities given &
/] / problem of size n taking time t.
nlll | / n
80
|l / P .
| ’ /' log(n) * How long if increase size of problem?
I' n2
60 I .
‘J b/ Problem Size: on 100M 1000M
[
2 }”’ K O(logn) 3+t 7+t 10+t
/
b, O®m) 10t 100t 1000 t
20/ |/
/{ /) O logn) >10t > 100t > 1000 t
/ ST [
- smTToTTTIITIIN T log(m) |
o Wfmermmr TR On?) 100 t 10,000 t 1,000,000 t
0 20 40 60 80 100
0(2”) - tio ~ t1oo ~ 1000
Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.
Adding to ArrayList EnsureCapacity

e Suppose n elements in ArrayList and add 1.

e If space:
e Add to end is O@®)
* Add to beginning is O(n)

e If not space,
e What is cost of ensureCapacity?

e O(n) because n elements in array

e What if only increase in size by 1 each time?

¢ Adding n elements one at a time to end
 Total cost of copying over arrays: 1+2+3+...+(n"1) = n(n-1)/2

e Total cost of O(n?)

* Average cost of each is O(n)

e What if double in size each time?

¢ Suppose add n = 2™ new elts to end
o Total cost of copying over arrays: 1+2+4+...+n/2 = n-1, O(n)

o Average cost of O@1), but “lumpy”

ArrayList Ops

* Worst case
e O(p): size, isEmpty, get, set

e O(n): remove, add

e Add to end, on average O(1)

