
Lecture 40:
Minimum Spanning Trees

CSCI 62
Fall, 2016

Kim Bruce & Peter Mawhorter

Spanning Trees

• A spanning tree T of a graph G is a subset of
the edges of G such that:

• T contains no cycles and

• Every vertex in G is connected to every other vertex
using just the edges in T.

• An unconnected graph has no spanning trees.

• A connected graph G will have at least one
spanning tree; it may have many.

Minimum Spanning Trees

• A weighted graph is a graph that has a weight
associated with each edge.

• If G is a weighted graph, the cost of a tree is
the sum of the costs (weights) of its edges.

• A tree T is a minimum spanning tree of G iff:

• it is a spanning tree and

• there is no other spanning tree whose cost is lower than
that of T.

Don’t care about the root!

Minimum Spanning Trees

• Can we find an MST without searching all the
possible trees?

Minimum Spanning Trees

• Application:

• The cheapest way to lay cable that connects a set of
points is along a minimum spanning tree that connects
those points.

• Many algorithms exist to find minimum
spanning trees, most run in O(e log e) time.

• In 1995 Karger, Klein & Tarjan found a linear
time randomized algorithm, but there is no
known linear time deterministic algorithm

Side-Remarks

• What is the size of a spanning tree of G if G
has n vertices?

• Why must minimum cost spanning tree
include least weight edge in graph?

Kruskal’s Algorithm

• Create forest F with no edges, using vertices in V

• Sort the edges in the graph by their weight (smallest to
largest)

• For each edge e in sorted order:

• if e connects two different trees in F , then add e to F

• Implementation Questions

• What data structure do you use for the forest?

• Union-find data structure! (briefly on board)

Sample Graph

1

7

654

321

4

34

83

2

6 5 64

7

(1,2):1
(2,3):2
(4,5):3
(6,7):3
(1,4):4
(2,5):4
(4,7):4
(3,5):5
(2,4):6
(3,6):6
(5,7):7
(5,6):8

Graph Algorithms

• Very important in practice!

• Sophisticated data structures

• Careful analysis of

• correctness

• complexity

• CS 140: Algorithms

