Lecture 39: Dijkstra’s
Algorithm

CSCI 62

MAN, | 5UCK AT THIS GAME.
Fall, 2016 | CAN'You GIvE ME.
A FEW POINTERS?

0x3A28213A
0Ox63392392C,

Kim Bruce & Peter N QD3 Ca e

| HATE YoU. /

Y

Graph Representations

e Adjacency Matrix

e Adjacency List

Adjacency Matrix

A B C D
A (e] I I I
B I o o) I
C I o o o
D I I o) o
* Good for dense graphs \Cdnput i edge
e Constant time lookup for edges. weights as entries

* Symmetric if undirected.

Adjacency Lists

(B [c [D]
[A+—D

[A]]

LA[f— B}

OlO|®W| >

* Good for sparse graphs, saves space

e lists on right can be vectors, array on left could be
map

* Linear time lookup for edges.

Complexity of BFS

e Enqueue the start node

¢ while the queue is not empty
e Dequeue a node

o if the the node has not been visited previously,
o visit it

 enqueue all of the node’s children
 Adjacency List:
e Each edge contributes both end points to queue

¢ O(max(ve)) if each visit takes constant time

e More expensive with adjacency matrix

Single-Source Shortest Paths

e Like Breadth-first search

o If all paths have length 1

o Otherwise use priority queue and mark with
predecessor so can find shortest path.

o Assume all edges have non-negative weights.

® Due to Dijkstra

Denver Chicago
Williams
3
20
SF 7
o 12 11
15
= Boston
LA

Denver Chicago
0 0 Williams
13 o0
20
SF {
o 12 11
0.9]
15
o o Boston

LA

Denver Chicago Denver Chicago
20 0 Williams 20 0 Williams
13 o0 13 0.0]
20 20
SF $ SF $
(o) 12 II (o) 12 II
o0 57
15 15
5 « Boston s - Boston
LA LA
PQ = [SF}, adding LA and Denver PQ ={LA,D}, adding B, D
Denver Chicago Denver Chicago
20 33 Williams 20 33 Williams
13 o0 13 o0]
20 20
SF ¢ SF 7
(o) 12 II (o) 12 II
57 40
15 15
5 = Boston s o Boston
LA LA

PQ ={D,Bl, adding C, LA, SF

PQ=1{C, B}, adding B

Denver Chicago
20 Williams

33
13 51
20
SF !
(e} 12 11
40
15
5 « Boston

LA

PQ ={Bl, adding W

Denver Chicago
20 Williams

33
13 51
20
SF /
(e} 12 11
40
15
s - Boston

LA

Single Source Shortest Path
Problem

* From a starting node s, find the shortest path
(and its length) to all other (reachable) nodes

e The collection of all shortest paths form a tree,
called... the shortest path tree!

e If all edges have the same weight, we can use
BFS.

e Otherwise ...

Single Source Shortest Path
Problem

e If all edges have weights > o, then we use
Dijkstra’s algorithm

¢ Essentially just BFS with priority queue

e Priorities are best known distance to a node from the
source

¢ Keep track of parents as in BFS so can get path

e Example of a “greedy” algorithm!

Dijkstra

e Variables

graph G

vertex_t s // start node

double length{nHnl} // Edge lengths (adj. list)
double dist{n} / Current best distance
vertex_t parent{n} // Current parent

pqueue Q // priority queue

Dijkstra Algorithm

o Set distfvl to e for all v, except distls} = o
* Add s to Q with priority 0.0
e loop while Q is not empty:
get node cur with min priority d (distance from s)
if (d < dist[curD
for each out going edge cur—v:
if dist{cur} + lengthlcurHv} < distlvk
dist[v} = dist[cur} + length{curlv}
parentlv} = cur

Add v to Q with new priority distlv}

Run Dijkstra on Sample
Graph

Run-Time of Dijstra

Let v = #vertices, e = #edges

Adding and removing from priority queue,

Odogv)

¢ Each goes on and off once, so O(v log v)

reduce_priority O(log v)

e Worst case, once for each edge, so O(e log v)

Total time O((e+v) log v)

