Lecture 38: Search & Connectivity

Fall 2016

Kim Bruce & Peter Mawhorter

Mentor Applications

- If you want to work as a mentor next
semester,
please apply today

=« Doesn’t have to be for this class

« See Piazza for details

Graph Code

e graph.h and graph.c from this week’s
assignment

Do they use an adjacency matrix or an adjacency list?

Spanning Trees

« Every tree is a graph...
+ ...but every* graph can also be reduced to a tree
A spanning tree is a tree which includes every node of a

graph using a subset of that graph’s edges

*if the graph is not connected, you get aspanning forest




Spanning Trees

« Can have properties like minimum-cost

+ Can be constructed by search
algorithms

Depth-First Search

« Explore the graph without revisiting nodes

= Depth-first means go until you hit a dead end, then back up to branch
out

+ Algorithm:
1. Mark current vertex

2. Recursively explore all unmarked neighbors

= (optionally) record where you came from

Depth-First Search

How can we mark a vertex?
How can we record paths?

Use a hash table!

What if we didn’t want to use recursion?

Breadth-First Search

What would happen if we replaced the stack in DFS with a
queue?

« Now we explore in order of distance from
start

« Algorithm:
1. Mark start vertex

2. Add all unmarked neighbors to queue and mark
them

3. Repeat step 2 with next from queue until it's empty




BEFS Code

(see code examples)

Restarting

« DFS/BFS only explore a single connected component

« To explore entire graph, loop over all vertices and run
DFS/BEFS again when you find an unmarked one

What is the big-O run time of these algorithms?
O(n +m)

Testing Connectivity

« For an undirected graph:

= Run DFS/BES from any vertex without restarting and see if all vertices
are marked

Does this work for a directed graph?

Directed Connectivity

« For strong connectivity on a directed graph:

1. Run D/BFS without restarting from a specific vertex

2. Run it again from that vertex after reversing all the
edges

= It’s strongly connected iff both runs mark all vertices

How could you test weak connectivity?




