Mentor Applications

- If you want to work as a mentor next semester, please apply *today*
 - Doesn’t have to be for this class
- See Piazza for details

Graph Code

- `graph.h` and `graph.c` from this week’s assignment

Do they use an adjacency matrix or an adjacency list?

Spanning Trees

- Every tree is a graph...
- ...but every* graph can also be reduced to a tree
- A *spanning tree* is a tree which includes every node of a graph using a subset of that graph’s edges

 *if the graph is not connected, you get a *spanning forest*
Spanning Trees

- Can have properties like minimum-cost
- Can be constructed by search algorithms

Depth-First Search

- Explore the graph without revisiting nodes
 - Depth-first means go until you hit a dead end, then back up to branch out
- Algorithm:
 1. Mark current vertex
 2. Recursively explore all unmarked neighbors
 - (optionally) record where you came from

Depth-First Search

How can we mark a vertex?
How can we record paths?
Use a hash table!
What if we didn’t want to use recursion?

Breadth-First Search

What would happen if we replaced the stack in DFS with a queue?

- Now we explore in order of distance from start
- Algorithm:
 1. Mark start vertex
 2. Add all unmarked neighbors to queue and mark them
 3. Repeat step 2 with next from queue until it’s empty
BFS Code
(see code examples)

Restarting
- DFS/BFS only explore a single connected component
- To explore entire graph, loop over all vertices and run DFS/BFS again when you find an unmarked one

What is the big-O run time of these algorithms?
\[O(n + m) \]

Testing Connectivity
- For an undirected graph:
 - Run DFS/BFS from any vertex without restarting and see if all vertices are marked

 Does this work for a directed graph?

Directed Connectivity
- For strong connectivity on a directed graph:
 1. Run D/BFS without restarting from a specific vertex
 2. Run it again from that vertex after reversing all the edges

 It’s strongly connected iff both runs mark all vertices

 How could you test weak connectivity?