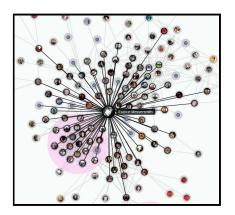
Lecture 37: Graphs

Fall 2016

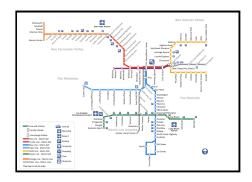
Kim Bruce & Peter Mawhorter

This Week


- Lab 12: Graph Algorithms
- Assignment 12: Driving Directions
 - The last assignment

Midterms

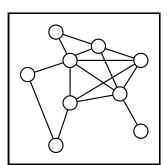
• Ask Prof. Mawhorter if you want yours back


What is a Graph?

- Any kind of network
 - Facebook friendships
 - Subway routes
 - Metabolic pathways
 - etc.
- Has nodes and edges

Graph Algorithms

- Shortest/cheapest routes
- Minimum-cost connectivity
- Maximize throughput
- Node similarity



Directed vs. Undirected

- Undirected graphs: edges are symmetric
 - Two-way roads
- Directed graphs: Edges go from a *source* to a *destination*
 - Some roads may be one-way

Formal Defintion

- A graph *G* is a pair (*V*, *E*) where:
 - *V* is a set of *vertices* (a.k.a. *nodes*)
 - *E* is a set of (ordered) pairs of vertices called *edges*

Graph Terms

- Indicent
- Adjacent
- Degree (in and out)
- Path
- Path Length
- Cycle
- Self loop

- Simple graph
- Simple path
- Simple cycle
- Acyclic graph (tree)
- Connected
- Strongly connected

(on board)

Data Structures

- Adjacency Matrix
 - Store an $n \times n$ boolean matrix
 - true means there is an edge from node i to node j
- Adjacency List
 - For each vertex, story a list of outgoing edges
 - Can store incoming edges too