
Lecture 34: Arrays in C
CS 62

Fall 2016
Kim Bruce & Peter Mawhorter

main.c & linked_list.c

• main.c
• Build and manipulate list

• Must destroy at end

• linked_list.c
• Forward declaration of linked_list_node

• Create functions: malloc, node->data notation
• Always check result of malloc!!

• Destroy: free

• Notice functions end with return self

Compiling C Programs

• Start with
• source code files (“.c” files)

• header files (“.h” files)

• C preprocessor:
• converts .c files into expanded source code file by

processing pre-processor commands:
• #define: Insert values into source code

• #include: Insert header code into source code

• Result is “.i” file (but erased quickly!)

Compiling C Programs
• Compiling:

• clang -c myFile.c

• generates myFile.o

• Typically include other options:
• -Wall // warn about legal, but dubious code

• -pedantic // warn about non-portable constructs

• Linking:
• clang myFile.o otherFile.o -o myProg

• Our makefiles give myProg.san.out

• Running: myProg (or myProg.san.out)

Arrays in C

• int x[50] // declare array of size 50 (uninitialized)

• for(int i = 0; i < 50; ++i) {x[i] = i} // initializes array

• Arrays are pointers to 0’th element.

• I.e., x[0] = *x

• Can play games with pointer arithmetic:

• *(x+1) = x[1]

• Resist the urge!

Copying Arrays

• Suppose you’ve initialized x as on previous slide

• Declare int y[100]

• What is result of y = x?
• Pointer copy!!! Shared array!

• How do you copy x into y?
• For loop!

Arrays don’t know their size!

• If pass as a parameter, pass their size as well!

• If pass array as parameter, changes to
components stick!!
• You are passing a pointer!

C Strings

• Array of char:  
 char my_string[]

• Equivalent type is *char

• char is 1 byte (ASCII), not unicode

• Strings are NULL-terminated:
• “Hello” = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’}

• Thus array length one more than string length

• Can write type as: char*

String Operations

• Use string.h for functions (or third party
library)
• See https://www.tutorialspoint.com/c_standard_library/

string_h.htm

• Examples:
• strcpy, strcmp, strcat, strstr, strchr, etc.

Enumerated Types

• enum days {Sunday, Monday, …};
• implicitly int’s

• Can assign int values explicitly:

• enum suit {clubs = 1, diamonds = 12, hearts = 3, …}

• Declared like Java, but Java considers them
distinct from ints (but can get using ordinal())

Const type qualifier

• const keyword used to make a variable read-
only — i.e., a constant

• Examples:

• Use more often for parameters

const int x = 1; 
x = 2; // error! 
int y = 2; 
const int* p = &y; 
*p = 3; // error! 
p = &x; // OK

int * const q = &y;

*q = 4; // OK
q = p; // ERROR

#define

• Can use #define to specify constants that are
manipulated, especially to debug
• #define DEBUG 0

• #define ARRAY_SIZE 100

• if (DEBUG) { 
 printf(“Max length of list is %d.\n”, ARRAY_SIZE);

• Saves space
• Handled by pre-processor

• Aside from debug issues, modern practice prefers const

Memory Errors
• Two Problems:

• Forget to delete memory allocated on heap
• Memory leak

• Access something already recycled (segfault)

• Neither will likely cause immediate error
• But will cause problems down the road!

• Source of 50% of run-time errors!

• Advice:
• Start w/out free’s,

• add when program works

Pointer Advice

• Coding advice:
• if pointer not initialized at declaration, initialize it

with NULL

• before dereferencing pointer, check if value is null &
print reasonable error message

• When using malloc, ensure result not NULL.

More Pointers

• Dereference operator * has low precedence.
• Can be an issue if we’re not careful.

• E.g., suffix ++ operator happens first.

• When increment the pointer, it increases
ptr by the space taken to hold an item of
that type.
• Suppose the pointer points to an int.  

To increment the pointer is to point to the next int.
If an int is 4 bytes in size, then the next int is 4 bytes
away. Thus ((int)(p))+1 ≠ (int)(p+1)

Using Pointers

• Easy to leave out parens w/ (*v).push_back(i)

• C has alternate: v->push_back(i)

Type-Unsafe Generics

• Void pointers, void*, can point to anything!

• So they can be used to implement type unsafe
generic data structures and algorithms
• This is very dangerous, as types are not checked at all.

• Use casts to ensure right types!

• Need to use functions pointer to pass functions
as arguments to other functions

Example

• quick sort from stdlib.h
void qsort(void *ptr, size_t count, size_t size,
 int (*comp)(const void *, const void *));

• comp is the comparison function that takes
two args and returns an int

Function Pointers

• Example:
int addInt(int n, int m) { return n+m; }
int (* functionPtr)(int,int); // declares function pointer

functionPtr = &addInt;
int sum = (*functionPtr)(2,3); // sum is 5

int add2to3(int (*fPtr)(int,int)) {
 return (*fPtr)(2,3);

}
int sum2 = add2to3(functionPtr) // sum is 5 again

Doesn’t capture outer scope correctly

