
Lecture 32: Arrays in C
CS 62

Fall 2016
Kim Bruce & Peter Mawhorter

Lab This Week

• Convert singly-linked list to doubly-linked.

• Review linked lists -- will write in C

• Assignment: Animals game that we talked
about in Java. Java code with lecture 15, but
do in C.

Review

• Functions (& types) must be declared before
used (called function prototypes):
• Declare: int sum(int x, int y);

• Then use, e.g. z = sum (3,7);

• Can define anywhere (early or late)

• Call by value is assignment
• Makes a copy of arguments

Review Call-by-Value

• What happens with:
void badswap(int m, int n) {
 int temp = m;
 m = n;
 n = temp;
}
...
swap(s,t)

No effect on arguments s, t!

Fix w/Pointers

• Modify: 
void swap(int *m, int *n) {  
 int temp = *m;  
 *m = *n;  
 *n = temp;  
}

• New swap works!

• if s = 3 and t = 7
• swap (&s, &t) exchanges values

Pointers & Addresses

• int *p // p is an address holding an int

• int q // &q is an address holding an int
• Sometimes called l-value of q

• Thus p = &q is legal, as is (*p) + q

• *(& x) = x // as values

• void* is pointer to anything
• No type safety!!!

Exercises

• int p = 6;

• int * q = &p;

• *q = 47;

• What are values of p and q?

Memory Management
• Java

• Everything (excepts primitive types) is an object and heap
allocated using “new C(…)”

• Variables contain references (pointers) to objects

• Heap is garbage collected

• C
• Everything is primitive and can be allocated on stack

• Stack variables deallocated when exit scope of declaration

• Heap allocation & deallocation up to programmer

• You are garbage collector!!

Allocating Memory

• Allocate memory w/ void* malloc(size_t size)
• where size_t is unsigned in

• Allocates size bytes on heap

• It doesn’t know or care what kind of data using

• implicit cast from void* to actual pointer type

• Use sizeof function to get size of types

Examples

• int * A = malloc(10 * sizeof(int)) // array of 10 ints

• node * N = malloc(sizeof(node)) // single node

• char * str

Deallocating Memory

• Use: void free (void* ptr)
• Deallocates memory allocated by malloc

• Does nothing is ptr is NULL

• Undefined if ptr not come from malloc or ptr already
freed.

• Common errors:
• Use of stale pointer, i.e., points to freed memory

• Double freeing pointer

• Memory leaks

After freeing ptr, set it to NULL!!

Separate Compilation

• Header files (*.h)
• Contain declarations and constant defs

• “Copied” into files with “include” directive
• #include <…> for system headers and 

#include “…” for user headers

• Cannot be included twice!
• See linked lists “ifndef”, “define” clauses

• Information hiding: “Abstract data type” (ADT)

Separate Compilation

• Implementation files (*.c)
• Contain definitions of everything declared in .h file

• myfile.h paired with myfile.c

Explore Singly-Linked List

• Look at linked_list.h (header file)
• Provides publicly available info

• Imported by implementation (.c) and users: main.c

• #ifndef and #define are used to make sure only 1 copy
imported into using program

• Method parameters that are pointers usually reflect
“out” parameters (something to be changed). See
implementations!

• Most ops return list so can chain commands

• Ignored in main.c (just style of writing)

main.c & linked_list.c

• main.c
• Build and manipulate list

• Must destroy at end

• linked_list.c
• Forward declaration of linked_list_node

• Create functions: malloc, node->data notation
• Always check result of malloc!!

• Destroy: free

• Notice functions end with return self

