Midterm Postponed!

Lecture 31: Functions and Pointers + Hopefully everyone saw the Piazza announcement
« If Monday is a problem for you, let us know ASAP and we'll
Fall 2016 arrange something
Kim Bruce & Peter Mawhorter « If you requested some kind of accommodation and still

want it, get in touch

Example Code Typedefs and Structs

® sum.cC

e vector.c struct point {
int x;
int y;

® big.c .

Typedets and Structs

struct point_s;
typedef struct point_s point;

struct point_s {
int x;
int y;

bi

Declaration vs. Definition

+ A declaration says “this will exist”

= Specify type and name of variable
= Specify name of struct

= Specify return type, name, and argument type(s) of function
« It may exist in a different file (‘external’)
« A definition fills out details (value of a variable, what's in a

struct, etc.)
= A definition implicitly declares what it defines.

Assignment

+ Assignment always makes a copy
» Understand exactly what you are copying

+ Assignment happens more often than you'd
expect

Call-by-Value

« Functions are call-by-value: they get a copy of their
arguments

« Modifications to a function’s arguments are invisible to the
rest of the program.

Objects with Call-by-Value

« No methods — functions don’t have special access to objects

« Call-by-value — functions can’t access objects via
arguments

So how can we modify an object?

Pointers!

+ In C we work directly with memory

« ‘&’ address-of operator returns a memory
location

o If int x = 4; then s&x is the location in memory
where the 4 is stored

Pointer Variables

« int *x holds a “pointer-to-an-integer”
= In Java, all of our Object variables were pointers
« ** denotes a pointer variable

* You can have a pointer to a pointer e.g., int **x

= Pointer variables can hold references:

int x = 4; int *p = &x;

= The +" applies to only one name:

int *x, y, *z;

