
Lecture 26: Concurrency
& Responsiveness

CS 62
Fall 2016

Kim Bruce & Peter Mawhorter

Some slides based on those from Dan Grossman,
U. of Washington

Lab

• Using parallelism to speed up sorting using
Threads and ForkJoinFramework

• Review relevant material.

Assignment

• Manipulate census data using parallelism.

• Work in pairs!

• Discuss design in class on Wednesday.
• Be ready for discussion …

Maze Program

• Uses stack to solve a maze.

• When user clicks “solve maze” button, spawns
Thread to solve maze.

• What happens if send “run” instead of “start”?
line 206

Non-Event-Driven
Programming

• Program in control.

• Program can ask for input at any point, with
program control depending on input.

• But user can’t interrupt program
• Only give input when program ready

Event-Driven Programming

• Control inverted.
• User takes action, program responds

• GUI components (buttons, mouse, etc.) have
“listeners” associated with them that are to be
notified when component generates an event.

• Listeners then take action to respond to event.

Event-Driven Programming
in Java

• When an event occurs, it is posted to
appropriate event queue.
• Java GUI components share an event queue.

• Any thread can post to the queue

• Only the “event thread” can remove event from the
queue.

• When event removed from queue, thread
executes the appropriate method of listener w/
event as parameter.

Example: Maze-Solver

• Start button ⇒ StartListener object

• Clear button ⇒ ClearAndChooseListener

• Maze choice ⇒ ClearAndChooseListener

• Speed slider ⇒ SpeedListener

Listeners

• Different kinds of GUI items require different
kinds of listeners:
• Button -- ActionListener

• Mouse -- MouseListener, MouseMotionListener

• Slider -- ChangeListener

• See GUI cheatsheet on documentation web
page

Event Thread

• Removes events from queue

• Executes appropriate methods in listeners

• Also handles repaint events

• Must remain responsive!
• Code must complete and return quickly

• If not, then spawn new thread!

Why did Maze Freeze?

• Solver animation was being run by event thread

• Because didn’t return until solved, was not
available to remove events from queue.
• Could not respond to GUI controls

• Could not paint screen

Off to the Races

• A race condition occurs when the computation
result depends on scheduling (how threads are
interleaved). Answer depends on shared state.

• Bugs that exist only due to concurrency
• No interleaved scheduling with 1 thread

• Typically, problem is some intermediate state
that “messes up” a concurrent thread that
“sees” that state

Example
class Stack<E> {
 …
 synchronized void push(E val) { … }
 synchronized E pop() {

 if(isEmpty())
 throw new StackEmptyException();
 …
 }

 E peek() {
 E ans = pop();
 push(ans);
 return ans;
 }
}

Sequentially Fine

• Correct in sequential world

• May need to write this way, if only have access
to push, pop, & isEmpty methods.

• peek() should have no overall effect on data
structure
• reads rather than writes

Concurrently Flawed

• Way it’s implemented creates an inconsistent
intermediate state
• Even though calls to push and pop are synchronized so

no data races on the underlying array/list/whatever

• (A data race is simultaneous (unsynchronized) read/write
or write/write of the same memory: more on this soon)

• This intermediate state should not be exposed
• Leads to several wrong interleavings…

Lose Invariants

• Want: If there is at least one push and no pops,
then isEmpty always returns false.

• Fails with two threads if one is doing a peek,
other isEmpty, & unlucky.

• Gets worse: Can lose LIFO property
• Problem do push while doing peek.

• Want: If # pushes > # pops then peek never
throws an exception.
• Can fail if two threads do simultaneous peeks

Solution

• Make peek synchronized (w/same lock)
• No problem with internal calls to push and pop because

locks reentrant

• Just because all changes to state done within
synchronized pushes and pops doesn’t prevent
exposing intermediate state.

• Re-entrant locks allows calls to push and pop if
use same lock

class Stack<E> {
 …
 synchronized E peek(){
 E ans = pop();
 push(ans);
 return ans;
 }
}

From within Stack

class C {
 <E> E myPeek(Stack<E> s){
 synchronized (s) {
 E ans = s.pop();
 s.push(ans);
 return ans;
 }
 }
}

From outside Stack

Beware of Accessing
Changing Data

• Even if unsynchronized methods don’t change
it.

class Stack<E> {
 private E[] array = (E[])new Object[SIZE];
 int index = -1;
 boolean isEmpty() { // unsynchronized: wrong?!
 return index==-1;
 }
 synchronized void push(E val) {
 array[++index] = val;
 }
 synchronized E pop() {
 return array[index--];
 }
 E peek() { // unsynchronized: wrong!
 return array[index];
 }
}

Providing Safe Access
• For every memory location (e.g., object field) in

your program, you must obey at least one of
the following:
• Thread-local: Don’t access the location in > 1 thread

• Immutable: Don’t write to the memory location

• Synchronized: Use synchronization to control access to
the location

all memory thread-local
memory immutable

memory

need
synchronization

