
Lecture 24:
Shared Memory Concurrency

CS 62
Fall 2016

Kim Bruce & Peter Mawhorter

Some slides based on those from Dan Grossman,
U. of Washington

Exponential Growth

• “How many times would I have to fold a sheet
of paper for the height of the folded paper to
reach the moon?”

• Human beings have terrible intuition for
exponential growth. If I asked you how many
times you would have to fold a single sheet of
US Letter paper to reach the moon, it would be
difficult to intuitively comprehend that it only
takes twenty folds to reach Mount Everest,
forty-two folds to the moon, and fifty to reach
the sun.

Uday I/O

For Lab

• Will be using in-line tools for Java
• Must do the reading before lab!!!!!

• If want to use your Mac
• type: “whereis java” at command line

• If no response then must download xcode

• Once downloaded, in preferences, select Downloads
• Select “Command Line Tools” and click “install”

• If want to use Windows
• Install Cygwin (with vim package) & puTTY

Assignment

• AI’ish program to play simple chess-like game,
Hex-A-Pawn.

• Build game tree
• Players move from root to leaves (win/lose configs)

• Smart Player:
• Trim sub-tree corresponding to last move when make a

losing move.

A Last Example: Sorting
• Quicksort, sequential, in-place,  

expected time O(n log n)
• Pick pivot elt O(1)

• Partition data into O(n)
• A: less than pivot

• B: pivot

• C: greater than pivot

• Recursively sort A, C 2*T(n/2)
• Now do in parallel, so T(n/2)

• n + n/2 + n/4 ... = 2n, which is O(n)

• With work, can improve more and get O(log2 n)

Parallel Streams in Java 8

Streams in Java 8
• (Lazy) Streams added in Java 8 to enable

simpler list processing
• Similar to functional languages

• Example:
• names.stream().filter(name -> name.startsWith(“B”) 

 .count()

• Returns count of number of elements of names starting
with “B”

• Compare with how write with loops.

• arl.stream().reduce(0,((m,n) -> m+n));

Stream Operations
• Construct: Most collection classes have

stream() method

• Filtering Operations:
• Stream<T> filter(Predicate<T> f)

• Stream<T> distinct()

• Stream<R> flatMap(Function<T,Stream<R>> f)

• Terminal Operations:
• int count()

• boolean allMatch(Predicate<T> f) anyMatch

Parallel Streams

• Stream<T> parallelStream()

• Tries a divide and conquer approach to solving
problem.
• Requires no explicit effort by programmer if data

structure set up properly (Spliterator)

Shared Memory Concurrency

Sharing Resources

• Have been studying parallel algorithms using
fork-join
• Reduce span via parallel tasks

• Algorithms all had a very simple structure to
avoid race conditions
• Each thread had memory “only it accessed”

• Example: array sub-range

• On fork, “loaned” some of its memory to “forkee” and
did not access that memory again until after join on the
“forkee”

But ...

• Strategy won’t work well when:
• Memory accessed by threads is overlapping or

unpredictable

• Threads are doing independent tasks needing access to
same resources (rather than implementing the same
algorithm)

• How do we control access?

Concurrent Programming

• Concurrency: Allowing simultaneous or
interleaved access to shared resources from
multiple clients

• Requires coordination, particularly
synchronization to avoid incorrect
simultaneous access: make somebody block
• join is not what we want

• block until another thread is “done using what we need”
not “completely done executing”

Non-Deterministic
Computation

• Even correct concurrent applications are
usually highly non-deterministic: how threads are
scheduled affects what operations from other
threads they see and when they see them.

• Non-repeatability complicates testing and
debugging

Examples

• Multiple threads:
• Processing different bank-account operations

• What if 2 threads change the same account at the same time?

• Using a shared cache of recent files
• What if 2 threads insert the same file at the same time?

• Creating pipeline w/ queue for handing work to
next thread in sequence?
• What if enqueuer and dequeuer adjust a circular array

queue at the same time?

Threads again?!?

• Not about speed, but
• Code structure for responsiveness

• Example: Respond to GUI events in one thread while another
thread is performing an expensive computation

• Processor utilization (mask I/O latency)
• If 1 thread “goes to disk,” have something else to do

• Failure isolation
• Convenient structure if want to interleave multiple tasks and don’t

want an exception in one to stop the other

Sharing is the Key

• Common to have:
• Different threads access the same resources in an

unpredictable order or even at about the same time
• But program correctness requires that simultaneous access be

prevented using synchronization

• Simultaneous access is rare
• Makes testing difficult

• Must be much more disciplined when designing / implementing a
concurrent program

• Will discuss common idioms known to work

Canonical Example

• Several ATM’s accessing same account.
• See ATM2

