Lecture 23: Parallelism

CS 62
Fall 2016
Kim Bruce & Peter Mawhorter

Some slides based on those from Dan Grossman,

U. of Washington

INEFFECTIVE SORTS

DEFINE. HALFHEARTEDMERGESORT (LIST):
IF LENGTH(LIST) < 2:
RETORN LIST
PIVOT = INT (LENGTH(LIST) / 2)
A= Mwmmasoer(usr[:mmjg
B = HALFHEARTEDMERGE SORT (LISt [PvOT:]
// UMMMMM
RETURN [A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTIMZED BOGOSORT
/1 RONS N O(N Lo6N)
FOR N FROM 1.TO LOG(LENGTH(LIST)):
SHUFFLE(LIST):
IF 1550RTED (LIST):
RERN LsT
RETURN “KERNEL PRGE FRULT (ERROR (ODE: 2)"

DEFINE JOBINTERVEW QUICKSORT (LIST):
OK 50 YOU CHOOSE A PVOT
THEN DIVIDE THE. LIST IN HALF
FOR EACH HALF:
(HECK To SEE IF ITS SORED
NO, WAIT, ITDOESN'T MATTER
COMPRARE EACH ELEVENT To THE PVOT
THE. BIGGER ONES GO IN ANBY LIST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 15 LIST B
PUT THE BIG ONES INTO UST B
NOW TAKE THE SECOND LIST
CALL IT LUST; UH, AZ
WHICH ONE WRS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSIELY CAUS MSELF
UNTIL BOTH UST5 ARE EMPTY
RIGHT?
NOT" EMPTY, BUT YOU KNOW WHAT T MEAN
AMT ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(UsT):
IF ISSORTED (LIST):
REURN LiST
FOR N FROM 1 T 10000:
PIVOT = RANDOM(0, LENGTH(LIST))
ST = UsT [PvoT:]+ LIST:PVOT]
IF 1550RTED(UST):
RETURN LST
IF ISSORTED(LST):
RETURN UST:
IF 1SS0RTED(LIST): //THIS CAN'T BE HAPPENING
RETORN LIST
IF ISSORTED (LIST): // COME ON COME ON
REURN UST
// OH JEEZ
// TV GONNA BE IN 50 MUCH TROUBLE
ust=L]
SYSTEM (“SHUTDOWN -H +5")
SYSTEM (“RM -RF /")
SYSTEM ("RM -RF ~/*")
SYSTEM("RM -RF /)
SYSTEM('RD /5 /Q C:*") //PORTABILITY
RETORN [1,2, 3,4,5]

To Use Library

* Create a ForkJoinPool

e Instead of subclass Thread, subclass Recursive Task<V>
e Opverride compute, rather than run

* Return answer from compute rather than instance vble
e Call fork instead of start

e (Call join that returns answer

* To optimize, call compute instead of fork (rather than
run)

e See ForkfoinFrameworkDivideConquerPSum

Getting Good Results

e Documentation recommends 100-50000 basic
ops in each piece of program

* Library needs to warm up, like rest of java, to

see good results

e Works best with more processors (> 4)

Similar Problems

* Speed up to O(log n) if divide and conquer and
merge results in time O(1).

* Other examples:

¢ Find max, min

Find (leftmost) elt satisfying some property
* Count elts satisfying some property
e Histogram of test results

e Called reductions

e Won't work if answer to 1 subproblem depends
on another (e.g. one to left)

Program Graph

e Program using fork and join can be seen as
directed acyclic graph (DAG).

o Nodes: pieces of work

¢ Edges: dependencies - source must finish before start

destination
fork
/ * Fork command finishes node and makes two edges out:
7N * New thread & continuation of old
N/ _ o
\ * Join ends node & makes new node w/ 2 edges coming in

T join

Performance

* Let Tp be running time if there are P processors
e Work =T\ = sum of run-time of all nodes in DAG

e Span =T. = sum of run-time of all nodes on most
expensive path in DAG

* Speed-up on P processors =T,/Tp

What does it mean?

e Guarantee: Tp = O(T,/P)+T_)

 No implementation can beat O(T _) by more than
constant factor.

 No implementation on P processors can beat O(T, / P)
¢ So framework on average gives best can do, assuming
user did best possible.
 Bottom line:

e Focus on your algos, data structures, & cut-offs rather
than # processors and scheduling.

o Just need T,, T _, and P to analyze running time

Examples

e Recall: Tp = O(T,/P)+T,)

e For summing:
e T,=0(m)
e T.=0(ogn)
e So expect Ty, = O(/P + log n)

e If instead:
e T, =0
e T..=0()
e Then expect Tp = O(n2/P + n)

Amdahl’s Law

* Upper bound on speed-up!

Suppose the work (time to run w/one processor) is 1 unit
time.

Let S be portion of execution that cannot be parallelized
T:=S+G-9) =1

Suppose get perfect speedup on parallel portion.

. TP=S+(I‘S)/P

Then overall speedup with P processors (Amdahl’s law):

e T./Tp=1/S+@S/P)
e Parallelism (eo processors) is: Ty /Tw =1/S

Bad News!

eT,/Tu=1/S

e If 33% of program is sequential, then millions of

processors won't give speedup over 3.

* From 1980 - 2005, every 12 years gave 100x speedup

* Now suppose clock speed is same but 256 processors instead

of 1.

* To get 100x speedup, need 100 < 1/(S + (1-S)/P)

* Solve to get solution S < .0061, so need 99.4% perfectly

parallel.

Moral

* May not be able to speed up existing algos
much, but might find new parallel algos.

 Can change what we compute

e Computer graphics now much better in video games

with GPU’s -- not much faster, but much more detail.

A Last Example: Sorting

* Quicksort, sequential, in-place,
expected time O(n log n)
e Pick pivot elt oW

e Partition data into O()
e A:less than pivot
e B: pivot
e C: greater than pivot
* Recursively sort A, C 2*T(n/2)
e Now do in parallel, so T(n/2)

® n+n/2+n/4...=2n, which is O(n)

» With work, can improve more and get O(log? n)

OO-Design

Because we’re a bit abead of schedule!

What are objects?

* Objects have
e State/Properties — represented by instance variables

* Behavior — represented by methods

e accessor and mutator methods

Calculator

e Calculator class: User interface
¢ including buttons and display

e No real methods — construct & associate listeners

e State class: Current state of computation
¢ Methods invoked by listeners

¢ Communicate results to user interface

e Listener classes: Communicate from interface
to state

Model-View-Controller

State

¢ Instance variables:

e partialNumber, numberInProgress?, numStack,
calcDisplay

* Methods:
e addDigit(int Value)
* doOp(char op)

e enter, clear, pop

Model-View-Controller

e Dissociate user interface with the “model”

* “model” represents actual computation

e May have multiple alternate user interfaces

* Mobile vs laptop versions of UI

* Model should be unaffected by change in UI.

* In Java UI generally served by “event thread”

o If tie up event-thread with computation then user-
interface stops being responsive.

Designing Programs

e Identify the objects to be modeled
e E.g., Frogger game, Shell game

e List properties and behaviors of each object
e Model properties with instance variables

¢ Model behavior with methods (write spec)

 Refine by filling in the details

e Hold off committing to details of representation as long
as possible.

Implementation

* Write in small pieces. Test thoroughly before
moving on.

* Solve simpler problem first — use “stubs” if
necessary.

* Refactor as code becomes more complex.

Reading on Object-Oriented
Design

* Practical Object-Oriented Design in
Ruby: An Agile Primer by Sandi Metz, 2013

* Design Patterns: Elements of Reusable
Object-Oriented Software by “Gang of
Four”, 1994

Shared Memory Concurrency

Sharing Resources

* Have been studying parallel algorithms using
fork-join

e Reduce span via parallel tasks

¢ Algorithms all had a very simple structure to
avoid race conditions
e Each thread had memory “only it accessed”
* Example: array sub-range

* On fork, “loaned” some of its memory to “forkee” and
did not access that memory again until after join on the
“forkee”

But ...

e Strategy won’t work well when:

¢ Memory accessed by threads is overlapping or
unpredictable

* Threads are doing independent tasks needing access to
same resources (rather than implementing the same
algorithm)

e How do we control access?

