
Lecture 23: Parallelism
CS 62

Fall 2016
Kim Bruce & Peter Mawhorter

Some slides based on those from Dan Grossman,
U. of Washington

To Use Library

• Create a ForkJoinPool

• Instead of subclass Thread, subclass RecursiveTask<V>

• Override compute, rather than run

• Return answer from compute rather than instance vble

• Call fork instead of start

• Call join that returns answer

• To optimize, call compute instead of fork (rather than
run)

• See ForkJoinFrameworkDivideConquerPSum

Getting Good Results

• Documentation recommends 100-50000 basic
ops in each piece of program

• Library needs to warm up, like rest of java, to
see good results

• Works best with more processors (> 4)

Similar Problems
• Speed up to O(log n) if divide and conquer and

merge results in time O(1).

• Other examples:
• Find max, min

• Find (leftmost) elt satisfying some property

• Count elts satisfying some property

• Histogram of test results

• Called reductions

• Won’t work if answer to 1 subproblem depends
on another (e.g. one to left)

Program Graph

• Program using fork and join can be seen as
directed acyclic graph (DAG).
• Nodes: pieces of work

• Edges: dependencies - source must finish before start
destination

• Fork command finishes node and makes two edges out:
• New thread & continuation of old

• Join ends node & makes new node w/ 2 edges coming in

fork

join

Performance

• Let TP be running time if there are P processors

• Work = T1 = sum of run-time of all nodes in DAG

• Span = T∞ = sum of run-time of all nodes on most
expensive path in DAG

• Speed-up on P processors = T1/TP

What does it mean?

• Guarantee: TP = O((T1 / P) + T ∞)
• No implementation can beat O(T ∞) by more than

constant factor.

• No implementation on P processors can beat O((T1 / P)

• So framework on average gives best can do, assuming
user did best possible.

• Bottom line:
• Focus on your algos, data structures, & cut-offs rather

than # processors and scheduling.

• Just need T1, T ∞, and P to analyze running time

Examples

• Recall: TP = O((T1 / P) + T ∞)

• For summing:
• T1 = O(n)

• T∞ = O(log n)

• So expect Tp = O(n/P + log n)

• If instead:
• T1 = O(n2)

• T∞ = O(n)

• Then expect Tp = O(n2/P + n)

Amdahl’s Law

• Upper bound on speed-up!
• Suppose the work (time to run w/one processor) is 1 unit

time.

• Let S be portion of execution that cannot be parallelized

• T1 = S + (1 - S) = 1

• Suppose get perfect speedup on parallel portion.
• TP = S + (1-S) / P

• Then overall speedup with P processors (Amdahl’s law):
• T1 / TP = 1 / (S + (1-S) / P)

• Parallelism (∞ processors) is: T1 / T∞ = 1 / S

Bad News!

• T1 / T∞ = 1 / S

• If 33% of program is sequential, then millions of
processors won’t give speedup over 3.

• From 1980 - 2005, every 12 years gave 100x speedup
• Now suppose clock speed is same but 256 processors instead

of 1.

• To get 100x speedup, need 100 ≤ 1/(S + (1-S)/P)

• Solve to get solution S ≤ .0061, so need 99.4% perfectly
parallel.

Moral

• May not be able to speed up existing algos
much, but might find new parallel algos.

• Can change what we compute
• Computer graphics now much better in video games

with GPU’s -- not much faster, but much more detail.

A Last Example: Sorting

• Quicksort, sequential, in-place,  
expected time O(n log n)
• Pick pivot elt O(1)

• Partition data into O(n)
• A: less than pivot

• B: pivot

• C: greater than pivot

• Recursively sort A, C 2*T(n/2)
• Now do in parallel, so T(n/2)

• n + n/2 + n/4 ... = 2n, which is O(n)

• With work, can improve more and get O(log2 n)

OO-Design
Because we’re a bit ahead of schedule!

What are objects?

• Objects have
• State/Properties — represented by instance variables

• Behavior — represented by methods
• accessor and mutator methods

Calculator

• Calculator class: User interface
• including buttons and display

• No real methods — construct & associate listeners

• State class: Current state of computation
• Methods invoked by listeners

• Communicate results to user interface

• Listener classes: Communicate from interface
to state

Model-View-Controller

State

• Instance variables:
• partialNumber, numberInProgress?, numStack,

calcDisplay

• Methods:
• addDigit(int Value)

• doOp(char op)

• enter, clear, pop

Model-View-Controller

• Dissociate user interface with the “model”
• “model” represents actual computation

• May have multiple alternate user interfaces
• Mobile vs laptop versions of UI

• Model should be unaffected by change in UI.

• In Java UI generally served by “event thread”
• If tie up event-thread with computation then user-

interface stops being responsive.

Designing Programs

• Identify the objects to be modeled
• E.g., Frogger game, Shell game

• List properties and behaviors of each object
• Model properties with instance variables

• Model behavior with methods (write spec)

• Refine by filling in the details
• Hold off committing to details of representation as long

as possible.

Implementation

• Write in small pieces. Test thoroughly before
moving on.

• Solve simpler problem first — use “stubs” if
necessary.

• Refactor as code becomes more complex.

Reading on Object-Oriented
Design

• Practical Object-Oriented Design in
Ruby: An Agile Primer by Sandi Metz, 2013

• Design Patterns: Elements of Reusable
Object-Oriented Software by “Gang of
Four”, 1994

Shared Memory Concurrency

Sharing Resources

• Have been studying parallel algorithms using
fork-join
• Reduce span via parallel tasks

• Algorithms all had a very simple structure to
avoid race conditions
• Each thread had memory “only it accessed”

• Example: array sub-range

• On fork, “loaned” some of its memory to “forkee” and
did not access that memory again until after join on the
“forkee”

But ...

• Strategy won’t work well when:
• Memory accessed by threads is overlapping or

unpredictable

• Threads are doing independent tasks needing access to
same resources (rather than implementing the same
algorithm)

• How do we control access?

