Lecture 22: Parallelism &
Concurrency

CS 62
Fall 2016
Kim Bruce & Peter Mawhorter

Some slides based on those from Dan Grossman,
U. of Washington

Parallelism Idea

| T J T
ans0 ansl ans2 ans3

T

ans

e Example: Sum elements of an array

e Use 4 threads, which each sum 1/4 of the array

e Steps:

* Create 4 thread objects, assigning each their portion of
the work

e Call start() on each thread object to actually run it
e Wit for threads to finish

* Add together their 4 answers for the final result

Parallel Programming in Java

* Creating a thread:
1. Define a class C extending Thread
* Override public void run() method
2. Create object of class C
3. Call that thread’s start method

¢ Creates new thread and starts executing run method.

* Direct call of run won'’t work, as just be a normal method call

* Alternatively, define class implementing Runnable, create
thread w/it as parameter, and send start message

Allows class to extend a different one.

Thread Class Methods

¢ void start(), which calls void run()
¢ void join() - blocks until receiver thread done

* Style called fork/join parallelism

e Need try-catch around join as it can throw exception
InterruptedException

* Some memory sharing: lo, hi, arr, ans fields

* Later learn how to protect using synchronized.




Actually not so great.

* If do timing, it’s slower than sequential!!

e Want code to be reusable and efficient as core
count grows.

o At minimum, make #threads a parameter.

* Want to effectively use processors available
now
* Not being used by other programs

¢ Can change while your threads running

Problem

® Suppose 4 processors on computer

* Suppose have problem of size n

* can solve w/3 processors each taking time t on n/3 elts.

e Suppose linear in size of problem.

e 'Try to use 4 threads, but one processor busy playing
music.
o First 3 threads run, but 4th waits.
o First 3 threads scheduled & take time ((n/4)/(n/3))*t = 3/4 t
o After 1st 3 finish, run 4th & takes another 3/4 t

e Total time 1.5 * t , runs 50% slower than with 3 threads!!!

Other Possible Problems

e On some problems, different threads may take
significantly different times to complete

* Imagine applying f to all members of an array,
where f applied to some elts takes a long time

* If unlucky, all the slow elts may get assigned to
same thread.

e Certainly won't see n time speedup w/ n threads.

e May be much worse! Load imbalance problem!

Other Possible Problems

* May not have as many processors available as
threads

e On some problems, different threads may take
significantly different times to complete




Toward a Solution

* To avoid having to wait too long for any one
thread, instead create lots of threads

* Schedule threads as processors become
available.

e If 1 thread very slow, many others will get
scheduled on other processors while that one
runs.

e Will work well if slow thread scheduled
relatively early.

Naive Algorithm Not Work

* Suppose divide up work into threads which
each handle 100 elts.

® Then will be n/to0 threads.
e Adding them up linear in size of array

e If each thread handles only 1 sum then back to
sequential algorithm.

Divide & Conquer

[RERRNNN RN NNEERERRRNNN NN RN NERRRRNENEN]
fwwywwgwwwwywywy
~ ~

- =

e Divide in half, w/ one thread per half.
e Each half further subdivided w/ new threads, etc.
e Depth is O(log n), which is optimal

e If have numProc processors then total time
O(n/numProc + log n)

straight-line code cost each layer is O(1) in parallel
instep 1

In practice

e Creating all threads and communication
swamps savings so

e use sequential cutoff of about 500

e Don’t create two recursive threads
e one new and reuse old.

e Cuts number of threads in half.

EfficentDivideCongquerParallelSum




Even Better

* Java threads too heavyweight - space and time

overhead.
e ForkJoin Framework solves problems

e Standard as of Java 7.

o We'll use additions as of Java 8

To Use Library

¢ Create a ForkJoinPool via

o fjPool =ForkJoinPool.commonPool()
e Instead of subclass Thread, subclass Recursive Task<V>
e Opverride compute, rather than run
e Return answer from compute rather than instance vble
e (all fork instead of start
e Call join that returns answer
e Start by writing fjPool.invoke(t) where t is initial thread

e To optimize, call compute instead of fork (uther than
run)

e See ForkfoinFrameworkDivideConquerPSum

Considerations

e Entire program should have one ForkJoinPool.

¢ Might as well make it static — use commonPool(
method

o Start up everything with fjPool.invoke(new ...)

e Once you are inside, use fork or compute.

e Use:

* RecursiveTask<T> when return a value of type T

e RecursiveAction when there is nothing to return

Getting Good Results

* Documentation recommends 100-50000 basic
ops in each piece of program

* Library needs to warm up, like rest of java, to
see good results

* Works best with more processors (> 4)




Similar Problems

* Speed up to O(log n) if divide and conquer and
merge results in time O(1).

* Other examples:

¢ Find max, min

Find (leftmost) elt satisfying some property

Count elts satisfying some property

e Histogram of test results

Called reductions

» Won’t work if answer to 1 subproblem depends
on another (e.g. one to left)

Program Graph

e Program using fork and join can be seen as
directed acyclic graph (DAG).
e Nodes: pieces of work

* Edges: dependencies - source must finish before start
destination

fork
/ * Fork command finishes node and makes two edges out:
7N e New thread & continuation of old

¢ Join ends node & makes new node w/ 2 edges coming in

N/
J

T join

Performance

* Let Tp be running time if there are P processors
* Work =T, = sum of run-time of all nodes in DAG

* Span = T. = sum of run-time of all nodes on most
expensive path in DAG

* Speed-up on P processors = T./Tp

What does it mean?

e Guarantee: Tp = O(T,/P)+T_)
e No implementation can beat O(T ) by more than
constant factor.
o No implementation on P processors can beat O(T, / P)
e So framework on average gives best can do, assuming
user did best possible.
* Bottom line:

e Focus on your algos, data structures, & cut-offs rather
than # processors and scheduling.

o Justneed T, T _, and P to analyze running time




