
Lecture 22: Parallelism &
Concurrency

CS 62
Fall 2016

Kim Bruce & Peter Mawhorter

Some slides based on those from Dan Grossman,
U. of Washington

Parallelism Idea

• Example: Sum elements of an array
• Use 4 threads, which each sum 1/4 of the array

• Steps:
• Create 4 thread objects, assigning each their portion of

the work

• Call start() on each thread object to actually run it

• Wait for threads to finish

• Add together their 4 answers for the final result

 ans0 ans1 ans2 ans3
 +
 ans

Parallel Programming in Java

• Creating a thread:
1. Define a class C extending Thread

• Override public void run() method

2. Create object of class C

3. Call that thread’s start method
• Creates new thread and starts executing run method.
• Direct call of run won’t work, as just be a normal method call

• Alternatively, define class implementing Runnable, create
thread w/it as parameter, and send start message

Allows class to extend a different one.

Thread Class Methods

• void start(), which calls void run()

• void join() -- blocks until receiver thread done

• Style called fork/join parallelism
• Need try-catch around join as it can throw exception 

 InterruptedException

• Some memory sharing: lo, hi, arr, ans fields

• Later learn how to protect using synchronized.

Actually not so great.

• If do timing, it’s slower than sequential!!

• Want code to be reusable and efficient as core
count grows.
• At minimum, make #threads a parameter.

• Want to effectively use processors available
now
• Not being used by other programs

• Can change while your threads running

Problem
• Suppose 4 processors on computer

• Suppose have problem of size n
• can solve w/3 processors each taking time t on n/3 elts.

• Suppose linear in size of problem.
• Try to use 4 threads, but one processor busy playing

music.

• First 3 threads run, but 4th waits.
• First 3 threads scheduled & take time ((n/4)/(n/3))*t = 3/4 t

• After 1st 3 finish, run 4th & takes another 3/4 t

• Total time 1.5 * t , runs 50% slower than with 3 threads!!!

Other Possible Problems

• On some problems, different threads may take
significantly different times to complete

• Imagine applying f to all members of an array,
where f applied to some elts takes a long time

• If unlucky, all the slow elts may get assigned to
same thread.
• Certainly won’t see n time speedup w/ n threads.

• May be much worse! Load imbalance problem!

Other Possible Problems

• May not have as many processors available as
threads

• On some problems, different threads may take
significantly different times to complete

Toward a Solution

• To avoid having to wait too long for any one
thread, instead create lots of threads

• Schedule threads as processors become
available.

• If 1 thread very slow, many others will get
scheduled on other processors while that one
runs.

• Will work well if slow thread scheduled
relatively early.

Naive Algorithm Not Work

• Suppose divide up work into threads which
each handle 100 elts.

• Then will be n/100 threads.
• Adding them up linear in size of array

• If each thread handles only 1 sum then back to
sequential algorithm.

Divide & Conquer

• Divide in half, w/ one thread per half.
• Each half further subdivided w/ new threads, etc.

• Depth is O(log n), which is optimal

• If have numProc processors then total time 
 O(n/numProc + log n)

+ + + + + + + +

+ + + +

+ +
+

straight-line code cost
in step 1

each layer is O(1) in parallel

In practice

• Creating all threads and communication
swamps savings so
• use sequential cutoff of about 500

• Don’t create two recursive threads
• one new and reuse old.

• Cuts number of threads in half.

EfficentDivideConquerParallelSum

Even Better

• Java threads too heavyweight -- space and time
overhead.

• ForkJoin Framework solves problems

• Standard as of Java 7.
• We’ll use additions as of Java 8

To Use Library
• Create a ForkJoinPool via

• fjPool =ForkJoinPool.commonPool()

• Instead of subclass Thread, subclass RecursiveTask<V>

• Override compute, rather than run

• Return answer from compute rather than instance vble

• Call fork instead of start

• Call join that returns answer

• Start by writing fjPool.invoke(t) where t is initial thread

• To optimize, call compute instead of fork (rather than
run)

• See ForkJoinFrameworkDivideConquerPSum

Considerations

• Entire program should have one ForkJoinPool.
• Might as well make it static — use commonPool()

method

• Start up everything with fjPool.invoke(new …)
• Once you are inside, use fork or compute.

• Use:
• RecursiveTask<T> when return a value of type T

• RecursiveAction when there is nothing to return

Getting Good Results

• Documentation recommends 100-50000 basic
ops in each piece of program

• Library needs to warm up, like rest of java, to
see good results

• Works best with more processors (> 4)

Similar Problems
• Speed up to O(log n) if divide and conquer and

merge results in time O(1).

• Other examples:
• Find max, min

• Find (leftmost) elt satisfying some property

• Count elts satisfying some property

• Histogram of test results

• Called reductions

• Won’t work if answer to 1 subproblem depends
on another (e.g. one to left)

Program Graph
• Program using fork and join can be seen as

directed acyclic graph (DAG).
• Nodes: pieces of work

• Edges: dependencies - source must finish before start
destination

• Fork command finishes node and makes two edges out:
• New thread & continuation of old

• Join ends node & makes new node w/ 2 edges coming in

fork

join

Performance

• Let TP be running time if there are P processors

• Work = T1 = sum of run-time of all nodes in DAG

• Span = T∞ = sum of run-time of all nodes on most
expensive path in DAG

• Speed-up on P processors = T1/TP

What does it mean?

• Guarantee: TP = O((T1 / P) + T ∞)
• No implementation can beat O(T ∞) by more than

constant factor.

• No implementation on P processors can beat O((T1 / P)

• So framework on average gives best can do, assuming
user did best possible.

• Bottom line:
• Focus on your algos, data structures, & cut-offs rather

than # processors and scheduling.

• Just need T1, T ∞, and P to analyze running time

