
Lecture 21: Parallelism &
Concurrency

CS 62
Fall 2016

Kim Bruce & Peter Mawhorter

Some slides based on those from Dan Grossman,
U. of Washington

Darwin

• Should have made significant progress by now!

• Don’t forget to submit species program (using
standard commands)

Parallelism & Concurrency

• Single-processor computers going gone away.

• Want to use separate processors to speed up computing
by using them in parallel.

• Also have programs on single processor running in
multiple threads. Want to control them so that program
is responsive to user: Concurrency

• Often need concurrent access to data structures (e.g.,
event queue). Need to ensure don’t interfere w/each
other.

History

• Writing correct and efficient multithread code
is more difficult than for single-threaded
(sequential).

• From roughly 1980-2005, desktop computers
got exponentially faster at running sequential
programs
• About twice as fast every 18 months to 2 years

More History

• Nobody knows how to continue this

• Increasing clock rate generates too much heat

• Relative cost of memory access is too high

• Can keep making “wires exponentially
smaller” (Moore’s “Law”), so put multiple
processors on the same chip (“multicore”)

• Now double number of cores every 2 years!

What can you do with
multiple cores?

• Run multiple totally different programs at the
same time
• Already do that? Yes, but with time-slicing

• Do multiple things at once in one program
• Our focus – more difficult

• Requires rethinking everything from asymptotic
complexity to how to implement data-structure
operations

Parallelism vs. Concurrency

• Parallelism:
• Use more resources for a faster answer

• Concurrency
• Correctly and efficiently allow simultaneous access

• Connection:
• Many programmers use threads for both

• If parallel computations need access to shared resources,
then something needs to manage the concurrency

Analogy
• Typical CS1 idea:

• Writing a program is like writing a recipe for one cook
who does one thing at a time!

• Parallelism:
• Hire helpers, hand out potatoes and knives

• But not too many chefs or you spend all your time
coordinating (or you’ll get hurt!)

• Concurrency:
• Lots of cooks making different things, but only 4 stove

burners

• Want to allow simultaneous access to all 4 burners, but
not cause spills or incorrect burner settings

Models Change

• Model: Shared memory w/explicit threads

• Program on single processor:
• One call stack:

• each stack frame holds local variables and references to parameters

• One program counter (current statement executing)

• Static fields

• Objects (created by new) in the heap (nothing to do with
heap data structure)

Multiple Theads/Processors

• New story:
• A set of threads, each with its own call stack & program

counter

• No access to another thread’s local variables

• Threads can (implicitly) share static fields / objects

• To communicate, write somewhere another thread reads

Shared Memory

…

pc=0x…

…

pc=0x…

…

pc=0x…

…

Threads, each with own
unshared call stack and current
statement (pc for “program
counter”) local variables are
primitives/null or heap references

Heap for all objects and
static fields

Other Models
• Message-passing:

• Each thread has its own collection of objects.
Communication is via explicit messages; language has
primitives for sending and receiving them.

• Cooks working in separate kitchens, with telephones

• Dataflow:
• Programmers write programs in terms of a DAG and a

node executes after all of its predecessors in the graph

• Cooks wait to be handed results of previous steps

• Data parallelism:
• Have primitives for things like “apply function to every

element of an array in parallel”

Parallelism in Java

Parallel Programming in Java

• Creating a thread:
1. Define a class C extending Thread

• Override public void run() method

2. Create object of class C
3. Call that thread’s start method

• Creates new thread and starts executing run method.
• Direct call of run won’t work, as just be a normal method call

• Alternatively, define class implementing Runnable, create
thread w/it as parameter, and send start message

Allows class to extend a different one.

Parallelism Idea

• Example: Sum elements of an array
• Use 4 threads, which each sum 1/4 of the array

• Steps:
• Create 4 thread objects, assigning each their portion of

the work

• Call start() on each thread object to actually run it

• Wait for threads to finish

• Add together their 4 answers for the final result

 ans0 ans1 ans2 ans3
 +
 ans

First Attempt
class SumThread extends Thread {
 int lo, int hi, int[] arr;//fields to know what to do
 int ans = 0; // for communicating result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … }
}

int sum(int[] arr){
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start(); // use start not run
 }
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

What’s wrong?

Correct Version
class SumThread extends Thread {
 int lo, int hi, int[] arr;//fields to know what to do
 int ans = 0; // for communicating result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … }
}

int sum(int[] arr){
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start(); // start not run
 }
 for(int i=0; i < 4; i++) // combine results
 ts[i].join(); // wait for helper to finish!
 ans += ts[i].ans;
 return ans;
} See program ParallelSum

Thread Class Methods

• void start(), which calls void run()

• void join() -- blocks until receiver thread done

• Style called fork/join parallelism
• Need try-catch around join as it can throw exception 

 InterruptedException

• Some memory sharing: lo, hi, arr, ans fields

• Later learn how to protect using synchronized.

Actually not so great.

• If do timing, it’s slower than sequential!!

• Want code to be reusable and efficient as core
count grows.
• At minimum, make #threads a parameter.

• Want to effectively use processors available
now
• Not being used by other programs

• Can change while your threads running

