This Week

. e Quiz on Friday:
LeCtUI'e 1 8: Bll’lary SeaI'Ch TI'QES = Binary Trees; Heaps; Binary Search Trees

« Lab today: Iterators
Fall 201 6 = Write an iterator for compressedTable

Kim Bruce & Peter Mawhorter « Assignment: Darwin

= 2-week assignment

» Program creatures that compete and infect each
other

, Binary Search Tree
Assignment 3

+ A binary tree is a binary search tree if:

« Grades are back « It is empty, or
= As usual, if your grade is not what you expect, talk to me or one of the = The root value is greater than or equal to every node in the left subtree
TAs and less than or equal to every node in the right subtree, and both

subtrees are binary search trees




Interface

public class BinarySearchTree<E extends Comparable<E>> {

protected BinaryTree<E> root;

public void add(E value) { ... }
public void contains(E value) { ... }

public void remove (E value) { ... }

protected BinaryTree<E> locate (BinaryTree<E> root, E val){ ... }
protected BinaryTree<E> predecessor (BinaryTree<E> node) { ... }

protected BinaryTree<E> remove Top (BinaryTree<E> topNode) { ... }

Implementation

e Public methods:
= add

= contains

" remove

« Protected
methods:
= locate
®* predecessor

= removeTop

Locating a Value

« Useful for add, contains, and remove

« Returns a pointer to the node with a given
value

= ...or to a node where that exact value could be added

« Recursive implementation (could be iterative)

Locating a Value

« Check current value vs. the search value
= If equal, return this node
» If smaller, 1ocate within left subtree
= Else within right subtree

= If the appropriate subtree is empty, return this
node




BinarySearchTree.java

Using Locate to Add

« Case one: locate returns closest node

= Add a new left/right child if value is smaller/larger than
result

« Case two: locate returns exact node
= Duplicates go in left subtree (arbitrary)

= Insert right of rightmost descendent

Predecessor

« Finds the rightmost descendent in left
subtree
= The next-smallest value in the tree
» What's the big-O runtime?

Removing Nodes

« Easy cases:
» Node is a leaf

» Node has only one
child

« Hard case:
= Node has two children

Can assume that we’re removing the root




Succession Wars

o« Where can we find a node which:

= Is > all left children and < all right
children

= Has at most one child

Hint: we’ve already got a function for this!

Succession Wars

« The predecessor, or rightmost child of left subtree, has both
properties
= Make that value the new root
= Replace it with its left subtree (it didn’t have a right subtree)

= Result is still a binary search tree

What's the big-O run time?

Keeping Trees Trimmed

« Lots of operations are O(h)

« But our guarantee is just ~ log n <h <
n

o Can we do better?

Keeping Trees Trimmed

« We can rotate a left child upwards:

1. Give our right subtree to our parent as a left subtree
2. Set our parent as our own right subtree

3. Take our parent’s old position
« All of our left descendants move up

« All of our parent’s right descendants move
down

+ Our right descendants don’t change height




Keeping Trees Trimmed Splay Trees

« Every time we find, get or add, rotate up to the
root

 The symmetric operation can rotate to the right

« A sequence of rotations can move a node to the

root = Side-effects of rotation give average-case O(log 1) tree height

= Worst case is still O(n)

» Bystander nodes end up more-balanced = But all O(h) operations are now average-case O(log 1)

Splay Trees

« Theory vs. practice
= All that rotation is expensive
= Great theoretical properties
= Simple idea

= Worse performance than other balancing
schemes




