Lecture 17: Heaps & Heapsort
Fall 2016

Kim Bruce & Peter Mawhorter

The Midterm

« Graded!

= Your program scores will likely bring up your
grade

= There is a second midterm

This Week

+ Quiz on Friday:

= Binary Trees; Binary Search Trees; Heaps

» Lab: Iterators

= Write an iterator for compressedTable

« Assignment: Darwin

= 2-week assignment

= Program creatures that compete and infect each

other

public interface PriorityQu:

@return

public E remove();
public E getFirst();
public void add(E value);
public boolean isEmpty();
public int size();
public void clear();

PriorityQueue

eue<E extends Comparable<E>> {



Min-Heap

« Min-Heap H is a complete binary tree such
that:
= His empty, or

= Both of the following hold: Min_Heap Example on BOaI'd

o The value in the root position is the smallest value in H

o The left and right subtrees of H are also heaps.
Equivalent to saying parent < both left and right children

« Excellent for a priority queue

= Pop elements w/lowest priority values first

Priority Queue Impls

» Regular queue kept in order or searched:

= One of add or remove will be O(n)

+ Heap representation is more efficient: O(log 1) for both add
and remove.

VectorHeap Code

* add to heap:
o Place in next free position
o “Percolate” up
= removeMin from heap:
o Swap root with last and “percolate” down

o Remove/return swapped root (no damage to tree)



Comparing Sorts

+ Quicksort: fastest on average (O(n log n) with good

constants) but worst case is O(1?); Binary Search Tree

takes O(log 1) extra space
« A binary tree is a binary search tree iff:
« Heapsort: O(n log n) average & worst cases;

= It is empty, or
no extra space

= The root value is greater than or equal to every node in the left subtree
» Bit slower practically than quick- & mergesorts and less than or equal to every node in the right subtree, and both

» Mergesort: O(n log 1) average & worst cases; subtrees are binary search trees
O(n) extra space

= Works even if things don’t fit in memory

Implementation

« Recursive methods:

* locate (private/protected)

= predecessor

(private/protected)
" add
= get

® remove



