
	
 1

Early and often: Bringing more parallelism into

undergraduate Computer Science curricula

1. The time is now
In view of recent industry shifts towards both multi-core
processors and applications of distributed computing through
techniques such as map-reduce, the question naturally arises: how
can Computer Science (CS) undergraduate programs respond with
curricular changes to prepare their students for the future of
computation, in which parallelism and concurrency will be a
necessity, not an option? Up to now, the innovations in hardware
parallelism that have driven advances in processor design have
been transparent to programmers and programming environments.
This is no longer the case. As hardware designers turn to ever
increasing numbers of cores, software designers must explicitly
turn to parallelism (and concurrency – for convenience, we will
use the term parallelism to include both) to take advantage of
these cores. If not, the steady advances in performance that
software designers formerly received for free will cease
[9][10][7].

As a community, we have reinvented the CS curricula in the past
when we saw the need. The renaming of this conference indicates
that Object-Oriented Programming has now become a mainstream
component of undergraduate programming. This change evolved
slowly: more than 20 annual meetings of OOPSLA took place
before that systemic change could fully appear. In contrast, we
need increased parallelism in our courses immediately: quad-core
chips now appear in commodity computers, and 8-core chips are
already in mass production.
As members of an international ITiCSE 2010 Working Group, we
considered strategies for changing undergraduate CS curricula at
all types of institutions to effectively and expediently respond to
this challenge. The main product of our Working Group was a
report analyzing the needed changes and suggesting how to
achieve them. In this position paper, we summarize our proposed
approach to curricular change and indicate some examples.

2. What CS educators can do
Our report [1] suggests a framework for a body of knowledge of
parallelism, illustrated in Table 1, and describes the knowledge
areas identified in that framework. We have developed a set of
essential learning objectives for each knowledge area, which
should serve as a guide when incorporating parallelism topics into
courses.

For each knowledge area, we describe a set of central ideas that
CS graduates should understand. For example, in the area of
conceptual issues and theoretical foundations, we identify
scalability, speedup, and efficiency as essential concepts, among
others. For software design, we describe known patterns of
parallelism students should consider when developing parallel
programs. In data structures and algorithms, we provide ideas for
studying shared access to data structures, with or without the use
of locks, and identify parallel algorithms that might be introduced.
In the area of software environments, the central ideas include
models of parallel computation (such as the shared memory model
and the actor model) and we provide information on the numerous
languages and software libraries that support such models. In the
hardware area, we argue that exposing students to a variety of
hardware topics (e.g., MIMD, SPMD, SIMD, shared vs.
distributed memory) helps them to develop adequate conceptual
models of hardware, informing choices they make in the other
parallel knowledge areas.
Table 1. Organizing the body of knowledge in parallelism.

Software Design

Data Structures and Algorithms

Software Environments

Motivating
Problems and
Applications

Hardware

Conceptual
Issues and
Theoretical
Foundations

Our report continues to propose teaching and learning strategies
for introducing more parallelism in CS undergraduate programs.
Of course, discussions of parallelism and concurrency have been
staples at most institutions, in courses such as Operating Systems,
Computer Architecture, and perhaps a dedicated parallel
computing course. Since all CS students must now become more
acquainted with more parallelism, we argue for expanding the
range of courses that include parallelism. We assert that a spiral
and experiential (“hands-on”) approach to learning the principles
and concepts of parallelism will instill in our students the abilities
that they will need throughout their careers to “think in parallel”
and adapt to new CPU features and developments. Here, we refer
to the Spiral Principle in the European discipline of Didactics of

Richard Brown
St. Olaf College (USA)

rab@stolaf.edu

Elizabeth Shoop
Macalester College (USA)

shoop@macalester.edu

Joel Adams
Calvin College (USA)

adams@calvin.edu

Curtis Clifton
Rose-Hulman Institute of

Technology (USA)
clifton@rose-hulman.edu

Mark Gardner
Virginia Tech University (USA)

mkg@vt.edu

Michael Haupt
Hasso-Plattner-Institut

University of Potsdam (Germany)
 michael.haupt@hpi.uni-potsdam.de

	
 2

Informatics, in which a student revisits notions periodically at
increasing depth and complexity [3][4].

For example, as CS educators, we no longer serve students well if
we portray computation as purely sequential in our courses.
Sequential programming skills remain crucial, since they are
applied in most parallel programming strategies. But sequential
programs will not scale up when they are ported from single core
machines to multi-core machines. To achieve faster performance
on new computers, such sequential computations must be replaced
by parallel computations, which means students must be trained to
design programs with parallelism in mind. Frequently presenting
and returning to parallelism throughout a student’s curriculum
will provide an invaluable sense of context, as well as useful skills
and knowledge of the concepts and principles of parallel
computation. In short, we advocate teaching parallelism “early
and often” at all levels of an undergraduate CS curriculum.

We identify examples in our report of strategies for inserting
notions of parallelism with hands-on exercises that require little or
even no extra time in a course’s syllabus. While avoiding
assumptions about a particular institution’s curricular design, we
suggest strategies for incrementally introducing parallelism in
introductory courses and courses treating various intermediate and
advanced subjects, such as data structures, software design,
algorithm analysis, and programming language concepts. For
instance, we cite examples that we and others have used in
practice at the introductory level to introduce students to data and
task parallelism program designs and to enable them to implement
their first parallel programs [2][5][6][8]. We also provide
examples and references for adding parallel algorithms, parallel
access to data structures, and patterns of parallel program design
to intermediate courses in any curriculum.

In our report, we also observe that certain languages used for
teaching programming in a CS curriculum also offer opportunities
for treating parallelism. We found many rich opportunities for
students to explore parallelism in the context of programming
languages throughout our working group process, largely during
the months of electronic meetings that preceded the drafting of
our report. We provide examples of languages that have been
designed with parallel programming in mind, including the
introductory systems Alice and Scratch, functional languages such
as Haskell and Erlang, and multi-paradigm languages such as
Scala and Fortress. We also suggest ways that additional libraries
for traditional languages could also be used to enable students to
practice thinking in parallel to solve problems.

3. Examples of change
The “early and often” approach we advocate and/or other
elements of our report appear in several existing initiatives to
teach more parallelism in undergraduate CS. One publicly
accessible example is a joint effort at Macalester and St. Olaf
Colleges, in which modular teaching materials capable of being
inserted in a variety of course settings are being developed and
tested in courses at both institutions at all curricular levels. The
effort includes supplementary software and documentation for a
variety of parallel computation platforms to support “hands-on”
exercises [6][8].

Our report has already formed the basis for curricular reform
efforts at Rose-Hulman Institute of Technology. Department
faculty there read a draft of the report and agreed to use the
continual improvement process for their ABET accreditation as
the lever to effect change. The faculty agreed to revise the
program outcomes for both Computer Science and Software
Engineering to explicitly mention scalability. The department
focused on scalability because that notion seemed concisely to
capture the essence of what is needed to take advantage of multi-
core computing. The current draft program outcome states: “By
the time students graduate with a computer science degree from
Rose-Hulman, they will be able to identify scalable solutions to
new problems and analyze the scalability of existing solutions.”
The faculty then reviewed the full set of courses offered by the
department in light of this change. As a result, nearly half of the
department’s courses will incorporate scalability and parallelism
as this process moves forward. The individual course outcomes
will touch on the various knowledge areas identified in the report,
filling in details around the broad strokes of the Institute’s new
program outcomes.

We offer our comments as a starting point for discussions of the
urgent challenge of injecting parallelism into CS curricula, and we
seek feedback from the SPLASH community on these ideas.

4. References
[1] Brown, R., Shoop, E. et al. 2010. Strategies for Preparing

Computer Science Students for the Multicore World. ACM
SIGCSE Bulletin. under review, (2010).

[2] Bruce, K.B., Danyluk, A. et al. 2010. Introducing
concurrency in CS 1. Proceedings of the 41st ACM
technical symposium on Computer science education
(Milwaukee, Wisconsin, USA, 2010), 224-228.

[3] Bruner, J. 1974. Toward a Theory of Instruction. Belknap
Press of Harvard University Press.

[4] Bruner, J. 1977. The Process of Education. Harvard
University Press.

[5] Ernst, D.J. and Stevenson, D.E. 2008. Concurrent CS:
preparing students for a multicore world. Proceedings of
the 13th annual conference on Innovation and technology
in computer science education (Madrid, Spain, 2008), 230-
234.

[6] Garrity, P. and Yates, T. WebMapReduce.
[7] Larus, J. 2009. Spending Moore's dividend. Commun.

ACM. 52, 5 (2009), 62-69.
[8] Parallel Computing in the Computer Science Curriculum.

http://csinparallel.org. Accessed: 08-03-2010.
[9] Sutter, H. 2005. The free lunch is over: A fundamental turn

toward concurrency in software. Dr. Dobb’s Journal. 30, 3
(2005), 202-210.

[10] Sutter, H. and Larus, J. 2005. Software and the
Concurrency Revolution. Queue. 3, 7 (2005), 54-62.

