Concurrency, Intuition and Formal
Verification: Yes, We Can!

Matt Pedersen’ and Peter Welch’
i “School of Computer Science, UNLV, USA
School of Computing, University of Kent, UK

phw@kent.ac.uk
matt@cs.unlv.edu

Curricula for Concurrency and Parallelism

O SPLASH 2010, 17!, Oct —

A Thesis (for which we have experimental evidence)

can we (and should we) teach concurrency at the start of
the undergraduate CS curriculum ...

we can (and we should) teach formal analysis and verification
of this concurrency at the same time ...

A Thesis (for which we have experimental evidence)

can we (and should we) teach concurrency at the start of
the undergraduate CS curriculum ...

Because it
scales

Because it's

there Because it

simplifies

Process — .
Orientation for complexity
{
CSP / m-calculus for performance

occam-1t / JCSP

A Thesis (for which we have experimental evidence)

can we (and should we) teach concurrency at the start of
the undergraduate CS curriculum ...

Because it's
there

Sequence, variables, assignment, parameters,
concurrency, channels, synchronisation, ...

I \
/
Fundamental primitives of software engineering

{
All are important. All are simple. All are available.

A Thesis (for which we have experimental evidence)

Complex and high-performance systems cannot avoid
concurrent design, implementation and reasoning.

Common concurrency bugs are intermittent — not
repeatable on demand. Untestable in practice.

We stand on the shoulders of giants (who made the
theory and model checkers). We verify programs just
by writing programs ... it becomes everyday practice.

\
|

we can (and we should) teach formal analysis and verification
of this concurrency at the same time ...

Example: autonomous robot component

The following example has been developed from one
first worked through in a single lesson of a graduate
class in concurrency at UNLV in the spring of 2010.

Example: autonomous robot component

a0 b0 cO al bl cl do di
V1 | 11
Device

Device : real-time controller for 8 channels (4 input, 4 output).

Example: autonomous robot component

a0 b0 cO al bl «ci do di
| | A | | A A A

I v

Device bar

Device : real-time controller for 8 channels (4 input, 4 output).

There are 3 sub-components: PO (weapons systems),
P1 (vision processing) and P2 (motion stabilizer).

They exchange information over internal channels (ask, ans,
ping) and all coordinate actions with an internal barrier (bar).

Example: autonomous robot component

a0 b0 cO al bl «ci do di
| | A | | A A A
v_ v v ¥
ask .
PO P1 RELN Y
ans
Device bar

CSP semantics apply. Channel communication is unbuffered
(sender waits for receiver and vice-versa). Any process
reaching a barrier waits for all processes to reach the barrier.

They exchange information over internal channels (ask, ans,
ping) and all coordinate actions with an internal barrier (bar).

Dutchtilt Desktops - Created 2007 - http:ffwww.chickita.btinternet.co.ukfwallpapers/ © 2003 Hasbro and TakaraTomy

Behaviour: two representations

a0 b0 cO al bl «ci do di
| | A | | A A A
v v v
ask .
PO p— P1 "8 P2
ans
Device bar

occam-1. for compiling to a runnable system.

[memory overheads <= 32 bytes per process / synchronisation overheads
of order tens of nanoseconds / eats multicore nodes for breakfast.]

CSP: for formal analysis.
[FDR2 model checker + other (simple) formal reasoning.]

Behaviour: two representations

a0 b0 cO al bl «ci do di
| | A | | A A A
ask .
ping
PO N P1 ——> P2
ans

Device bar

Behaviour: what are we looking for?

a0

b0

cO
A

do di

A

A

v

v

PO

ask

Device

ans

ping

P2

bar

deadlock: might it ever stop?

[e.g. PO and P2 want to synchronise on bar, but P1 wants to ping.]

livelock: might it get busy ... but refuse all external signals?
[e.g. PO, P1 and P2 start engaging in an infinite sequence of internal
channel or barrier synchronisations (on ask, ans, ping and bar).]

Behaviour: what are we looking for?

a0 b0 cO al bl «ci do di
| | A | | A A A
v v v
ask .
PO — P1 "8 P2
ans
Device bar

safety: might it ever engage in an incorrect sequence of
external signals?

liveness: will it engage in correct sequences of external
signals, as required?

[Some specs allow alternative sequences to be performed — all are
correct, but an implementation must only do one and is free to choose.]

Behaviour: occarm-T (executable)

a0 b0 cO al bl «ci do di
| | A | | A A A

v k v
PO

ping

ans

Device bar

Behaviour: occarm-T (executable)

a0 b0 cO al bl «cl do di
A | A A A
v v
ask :
PO P1 el e2
ans
Device) bar

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!, BARRIER bar)
WHILE TRUE

INT %X, y, z:

SEQ
ask ? x -- take question
a0 ?y
ans ! O -- return answer (will depend on x and y)
bO ? z
SYNC bar -- wailt for the others
cO! O

Behaviour: occarm-T (executable)

a0 b0 cO al bl «cl do di
A | A A A
v) v Vv
as :
PO P1 el e2
ans
Device) bar

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)
WHILE TRUE

INT X, y, z:

SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
al ?y
bl ? z
SYNC bar -- wait for the others
cl! O
ping ' O -- update neighbour

Behaviour: occarm-T (executable)

a0 b0 cO al bl «cl do di

t L |1 t1

P2

Device) bar

PROC P2 (CHAN INT dO!, di!, ping?, BARRIER bar)
WHILE TRUE

INT Xx:

SEQ
SYNC bar -- wait for the others
do ' O
ping ? X -- receive update
SYNC bar -- wait for the others
di!' o
ping ? X -- receive update

Behaviour: occarm-T (executable)

a0 b0 cO al bl «cl do di
A A A A

|
y

P2

Device i bar

PROC Device (CHAN INT a0?, b0?, cO!, al?, bl?, cl!, dO!, dil})
CHAN INT ask, ans, ping:
BARRIER bar:
PAR ENROLL bar
PO (a0?, b0?, cO!, ask?, ans!, bar)
P1 (al?, bl?, cll!, ask!, ans?, ping!, bar)
P2 (dO!, di!, ping?, bar)

Informal

s Behaviour: occarm-T (executable)

BARRIER bar)
==p WHILE TRUE
INT x, y, z:
SEQ
ask ? x -
a0 ?y
ans !' O -
b0 ? 2z
SYNC bar -
cOt!'O0

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
== WHILE TRUE
take question INT x:
SEQ
return answer SYNC bar -- wait for others
do ' 0
wait for others ping ? X -- receive update
SYNC bar -- wait for others
di!' o
ping ? X -- receive update

BARRIER bar)
=Py WHILE TRUE
INT %, y, z:
SEQ
ask ' O --
ans ? x -
al ?y
bl ? z
SYNC bar -
ci!t!o
ping ' O -

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

What patterns of

ask question external (blue)
wait for answer Signalling are
possible from

wait for the others Device?

update neighbour

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

=p WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ ==l WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ' O -- return answer SYNC bar -- wait for others
bo ? z do ' 0
SYNC bar -- wait for others ping ? X -- receive update
cOo!' 0 SYNC bar -- wait for others
: di!' o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

mPp WHILE TRUE i
INT %, y, z: What's first?
SEQ

ask 1 O -- ask question

ans ? x -- wait for answer

al ?y

bl ? z

SYNC bar -- wait for the others

cl!o

ping ' O -- update neighbour

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
malp ask ? X -- take question INT x:
a0 ? vy SEQ
ans ' 0O -- return answer == SYNC bar -- wait for others
bo ? z do ' 0
SYNC bar -- wait for others ping ? X -- receive update
cOo!' 0 SYNC bar -- wait for others
: dl ! o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE : i
INT %, y, z: What's first?
SEQ

=)y ask ! O -- ask question
ans ? x -- wait for answer
al ?y
bl ? z
SYNC bar -- wait for the others
cl!o
ping ' O -- update neighbour

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
ask ? x -- take question INT x:
mp a0 ? y SEQ
ans ' 0O -- return answer == SYNC bar -- wait for others
bo ? z do ' 0
SYNC bar -- wait for others ping ? X -- receive update
cOo!' 0 SYNC bar -- wait for others
: dl ! o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE i
INT %, y, z: What's first?
SEQ

ask 1 O -- ask question
=) NS ? X -- wait for answer
al ?y
bl ? z
SYNC bar -- wait for the others
cl1! o0 [2a0]
ping ' O -- update neighbour

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
ask ? x -- take question INT x:
mp a0 ? y SEQ
ans ' 0O -- return answer == SYNC bar -- wait for others
bo ? z do ' 0
SYNC bar -- wait for others ping ? X -- receive update
cOo!' 0 SYNC bar -- wait for others
: dl ! o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE :
INT x, y, z: What's second?
SEQ

ask 1 O -- ask question
=) NS ? X -- wait for answer
al ?y
bl ? z
SYNC bar -- wait for the others
cl1! o0 [2a0]
ping ' O -- update neighbour

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
== ans ! O
b0 ? z
SYNC bar
cO!'O

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT %, y, z:
SEQ
ask 1 O -- ask question
=) NS ? X -- wait for answer
al ?y
bl ? z

SYNC bar -- wait for the others

cl!o

ping ' O -- update neighbour

What's second?

[a0]

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
ans !' O
=P H0 ? 2
SYNC bar
cOt!'O0

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT %, y, z:
SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
=y 2l ? y
bl ? z

SYNC bar -- wait for the others

cl!o

ping ' O -- update neighbour

What's second?

(59) or (@)

[a0]

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
ans !' O
=P H0 ? 2
SYNC bar
cOt!'O0

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT %, y, z:
SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
=y 2l ? y
bl ? z

SYNC bar -- wait for the others

cl!o

ping ' O -- update neighbour

|f second, then?

[20, bO]

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
ans !' O
b0 ? z
== SYNC bar
cOt!'O0

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT %, y, z:
SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
=y 2l ? y
bl ? z

SYNC bar -- wait for the others

cl!o

ping ' O -- update neighbour

|f second, then?

[20, bO, al]

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE
INT x, y, z:
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? y SEQ
ans ! O -- return answer == SYNC bar
b0 ? z do'!'o
=y SYNC bar -- wait for others ping ? X
cOo!oO SYNC bar
: dl ! o
ping ? X

PROC P2 (CHAN INT dO!, di!, ping?,
BARRIER bar)

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE
INT %, y, z:
SEQ

ask ' O
ans ? x
al ?y
=P hl ? z
SYNC bar
ci!t!o
ping ' O

ask question
wait for answer

wait for the others

update neighbour

|f ‘second then?
1) en ()

[20, bO, al, bl]

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE
INT x, y, z:
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? y SEQ
ans ! O -- return answer == SYNC bar
b0 ? z do'!'o
=y SYNC bar -- wait for others ping ? X
cOo!oO SYNC bar
: dl ! o
ping ? X

PROC P2 (CHAN INT dO!, di!, ping?,
BARRIER bar)

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE
INT %, y, z:
SEQ

ask ' O
ans ? x
al ?y
bl ? z
== SYNC bar
ci!t!o
ping ' O

ask question
wait for answer

wait for the others

update neighbour

|f ‘second then?
1) en ()

[20, bO, al, bl]

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
ans !' O
=P H0 ? 2
SYNC bar
cO't!' 0

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
=y 2l ? y
bl ? z

SYNC bar -- wait for the others

cil!o

ping ' O -- update neighbour

packiracking ...

What's second?

(o) or (@)

[a0]

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
ans !' O
=P H0 ? 2
SYNC bar
cOt!'O0

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT %, y, z:
SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
=y 2l ? y
bl ? z

SYNC bar -- wait for the others

cl!o

ping ' O -- update neighbour

|f second, then?

[20, al]

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE
INT x, y, z:
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ! O -- return answer == SYNC bar
=P H0 ? 2 do !0
SYNC bar -- wait for others ping ? x
cOo!oO SYNC bar
: dl ! o
ping ? X

PROC P2 (CHAN INT dO!, di!, ping?,
BARRIER bar)

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE
INT %, y, z:
SEQ

ask 1 O
ans ? X
al ?y
== bl ? 2
SYNC bar
cil!t!o
ping ' O

ask question
wait for answer

wait for the others

update neighbour

|f second, then?

[20, al]

(* any order)

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
ans !' O
=P H0 ? 2
SYNC bar
cOt!'O0

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dO!, di!, ping?,

BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT %, y, z:
SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
al ?y
== bl ? 2
SYNC bar -- wait for the others
cl!o
ping ' O -- update neighbour

|f second, then?

[20, al, bO, bl]
[20, al, bl, bO]

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
ans !' O
b0 ? 2z
== SYNC bar
cOt!'O0

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dO!, di!, ping?,

BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE

INT %, y, z:

SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
al ?y
bl ? z

== SYNC bar -- wait for the others

cl!o
ping ' O -- update neighbour

|f second, then?

[20, al, bO, bl]
[20, al, bl, bO]

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dOo!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ' 0O -- return answer ==pp SYNC bar -- wait for others
bo ? z do ' 0
== SYNC bar -- wait for others ping ? X -- receive update
cOo!' 0 SYNC bar -- wait for others
: di!' o
ping ? X -- receive update
PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

WHILE TgﬁgRlER e [a0, b0, al, bi]
INT %, y, z: [aO, al, bO, bl]
SEQ

ask ' O -- ask question [aos al! bl! bO]

ans ? x -- wait for answer

al ?

b1 2 o What next?
== SYNC bar -- wait for the others

cit!o

ping ' O -- update neighbour

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ' O -- return answer SYNC bar -- wait for others
bo ? z == d0 ! O
SYNC bar -- wait for others ping ? X -- receive update
== cO ! O SYNC bar -- wait for others
: dl ! o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

WHILE TgﬁgRlER e [0, bO, al, bl]
INT %, y, z: [aO, al, bO, bl]
SES\Sk 10 -- ask question [aos al! bl! bO]

ans ? X -- wait for answer
ey What next?

SYNC bar —- wait for the others *
= cl ! 0O
ping ' O -- update neighbour

(* any order)

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ' O -- return answer SYNC bar -- wait for others
bo ? z == d0 ! O
SYNC bar -- wait for others ping ? X -- receive update
== cO ! O SYNC bar -- wait for others
: dl ! o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar) J g
WHILE TRUE That§ 18 pOSSIbI?
o " E orderings of the first 7
ask ! 0 -- ask question signals.
ans ? X -- wait for answer
o What happens when
SYNC bar -- wait for the others -
— o1 1 0 the sub-processes

ping ! O -- update neighbour Start Iooping?

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dOo!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ' O -- return answer SYNC bar -- wait for others
bo ? z == d0 ! O
SYNC bar -- wait for others ping ? X -- receive update
= cO ! O SYNC bar -- wait for others
: di!' o
ping ? X -- receive update
PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar) " :
WHILE TRUE Could PO signal again
;23 X, Y, 2: on a0 before P2 gave
ask ' 0 -- ask question Its first dQ?
ans ? x -- wait for answer
al ?
b1 2 o Are there some more
SYNC bar -- wait for the others I H _ i
> oo possible first-7 signal
ping ! O -- update neighbour SequenceS?

@ Behaviour: CSP-M (verityable)

a0 b0 cO al bl cl do di
A | A A A
v v) v v
as :
«—— ping
PO P1 P2
Y —>
ans
Device) bar

We can formally verify the previous intuition (which was only
about the opening behaviour of the system) and answer the
open questions (and more) about its continuous behaviour

with a €SP representation.

We use CSP-M, the machine readable form used by the FDR2
model checker. CSP-M is a declarative (functional) language —
loops map to tail recursions. Students who enjoy programming

have no problem learning new syntax (it's particularly easy when
the semantics remain unchanged) — but they need to be told why!

@ Behaviour: CSP-M (verityable)

a0 b0 cO
A

al bl «cl
A

do di
A A

v_ v

PO

v

v

ask

!l

ans

P1

ping

P2

Device

bar

CSP-M lets us abstract the channel communications further
by omitting the data sent (always zero in our example) and
the direction of communication (irrelevant here).

CSP processes synchronise only on events, which capture the
notions of point-to-point channels and multiway barriers. CSP-M

calls them all channels.

In the following CSP-M, we further simplify things by omitting
process parameters and accessing all channels from global
declaration. [We could have done this with the occam-mr ...]

@ Behaviour: CSP-M (verityable)

a0 b0 cO al bl cil do di
||A ||A A A
v v_v

PO

P1 P2

Device) bar

channel a0, b0, c0, al, bl, cl1, do, dliggigifg;,
PO = ask -> a0 -> ans -> b0 -> bar -> c0 -> PO

@ Behaviour: CSP-M (verityable)

a0 b0 cO al bl «cl do di
A A A A

P2

3
)
S lo R
Q 2 ’ -
channel g/ PRI S *,<k, ans, ping, bar
/ e 2 ~ ok, s>
> Q. T, > D
PO = as{\\ b i"g! o ¢ roistio,, ")%
¢ 0 ™~ Yoo Q”&u /
P1 =

@ Behaviour: CSP-M (verityable)

a0 bo

|
U

cO
A

al bl cl do di
A A A

P2

‘§ . o e \ask, ans, ping, bar
\ SEQS e ‘Og‘ (ec'e‘" gof o \
PO = asl\ R * e oo™ /)—> PO
\ e v cec®
P1 = ask\ sd%:_go? * '//bar -> ¢l -> ping -—> P1
\ ot
P2 = bar -=> dO -> ping -> bar -> dl1 -> ping -> P2

@ Behaviour: CSP-M (verityable)

a0 b0 cO al bl cl do di
A | A A A
v v) v v
as :
«—— ping
PO P1 P2
Y —>
ans
Device) bar

channel a0, b0, cO, al, bl, cl, dO, dl, ask, ans, ping, bar

PO = ask -> a0 -> ans -> b0 -> bar -> c0 -> PO

P1

ask -> ans -> al -> bl -> bar -=> c1 -> ping -> P1

P2

bar -> dO -> ping -> bar -> dl1 -> ping -> P2

POP1 = (PO [|] {ask, ans, bar} |] P1) \ {ask, ans}
Device = (POP1 [|] {ping, bar} |1 P2) \ {ping, bar}

@ Behaviour: CSP-M (verityable)

Loading the system below into FDR2, we discover straight away that
Device is free from deadlock and livelock — just click the buttons!

© © © © ©

channel a0, b0, cO, al, bl, cl1, dO, dl, ask, ans, ping, bar

PO = ask -> a0 -> ans -> b0 -> bar -> c0 -> PO

P1

ask -> ans -> al -> bl -> bar -=> c1 -> ping -> P1

P2 = bar -=> dO -> ping -> bar -> dl1 -> ping -> P2

POP1 = (PO [|] {ask, ans, bar} |] P1) \ {ask, ans}
Device = (POP1 [|] {ping, bar} |1 P2) \ {ping, bar}

@ Behaviour: CSP-M (verifyable) (" ion)

>
Informal understanding

To check whether particular event [20, b0, al, bil]

sequences (traces) may initially be [20, al, bO, bl]

performed by Device ... €.0. =———) [20, al, bl, bO]
What next?

*
Define processes that have no @

choice in the matter ... e.g. \ (* any order)

T0
T1

a0 -=> b0 ->al -=> bl ->d0O -=> cO -> c1 -> STOP
a0 -> b0 ->al ->d0 -> bl -> cO0 -> ¢c1 -> STOP

And ask: does each trace refine Device?

Process P trace refines Qf all traces of P are traces of Q.

Q [T=P

@ Behaviour: CSP-M (verifyable) (" ion)

>
Informal understanding

To check whether particular event [20, b0, al, bil]

sequences (traces) may initially be [20, al, bO, bl]

performed by Device ... €.0. =———) [20, al, bl, bO]
What next?

*
Define processes that have no @

choice in the matter ... e.g. \ (* any order)

T0
T1

a0 -=> b0 ->al -=> bl ->d0O -=> cO -> c1 -> STOP
a0 -> b0 ->al ->d0 -> bl -> cO0 -> ¢c1 -> STOP

FDR2 reports that TO trace refines Device ... but T1 does not —
which confirms our intuition. ®©©

Device [T= TO J Device [T=T1 X

@ Behaviour: CSP-M (verifyable) (" ion)

>
Informal understanding

To check whether particular event [20, b0, al, bil]

sequences (traces) may initially be [20, al, bO, bl]

performed by Device ... €.0. =———) [20, al, bl, bO]
What next?

*
Define processes that have no @

choice in the matter ... e.g. \ (* any order)

T0
T1

a0 -=> b0 ->al -=> bl ->d0O -=> cO -> c1 -> STOP
a0 -> b0 ->al ->d0 -> bl -> cO0 -> ¢c1 -> STOP

Clearly, [a0, bO, al, bl, dO, c0O, cl1] is a trace of TO.
Therefore, it is also a trace of Device.

Device [T= T0 | /

@ Behaviour: CSP-M (verifyable) (" ion)

>
Informal understanding

To check whether particular event [20, b0, al, bil]

sequences (traces) may initially be [20, al, bO, bl]

performed by Device ... €.0. =———) [20, al, bl, bO]
What next?

*
Define processes that have no @

choice in the matter ... e.g. \ (* any order)

TO = a0 -> b0 -> al -> bl -> d0 -> c0 -> cl1 -> STOP
T1 = a0 -> b0 -> al ->@0 -> bD-> ¢0 -> ¢l -> STOP

At least one trace of T1 is not a trace of Device. Comparing TO
and T1, the fault lies in the mis-ordering of dO and b1.

Device [T=T1 X

@ Behav

iour: CSP-M (verityabl

o) (o)

a0 bo do di
|| | | 1 1
vV) v v
as .
PO P1 RELN Y
ans
Device bar

Let’s ask a more difficult question about the continuous running of

the system. Suppose the robot would do something very bad if its
controller Device were ever to signal twice on a0 without a signal

on dO or d1 in between. Might this ever happen?

Simple: write a process checking the signals to/from Device,
looking for the bad scenario and deadlocks if spotted. This is just
programming ...

@ Behaviour: CSP-M (verityable)

a0 b0 cO al b do di

A A

>

Device bar

Check (n) =
IT n >= 2 then STOP else
a0 -> Check (n+1) [] dO -> Check (0) [] di1 -> Check (0) []
al -> Check (n) [1 bO -> Check (n) [] bl -> Check (n) []
cO0 -> Check (n) [] cl1 > Check (n)

Simple: write a process checking the signals to/from Device,

looking for the bad scenario and deadlocks if spotted. This is just
programming ...

: CSP-M (verityable) @

Device bar

Check (n) =
IT n >= 2 then STOP else
a0 -> Check (n+1) [] dO -> Check (0) [] di1 -> Check (0) []
al -> Check (n) [1 bO -> Check (n) [] bl -> Check (n) []
cO0 -> Check (n) [] cl1 > Check (n)

The operator “[]” means wait for one or more of the operand
processes to become able to run ... choose one of them and run.

@ Behaviour: CSP-M (verityable) @

a0 b0 cO al bl «ci do di
A A

Device bar

Check (n) =
IT n >= 2 then STOP else
a0 -> Check (n+1) [] dO -> Check (0) [] di1 -> Check (0) []
al -> Check (n) [1 bO -> Check (n) [] bl -> Check (n) []
cO0 -> Check (n) [] cl1 > Check (n)

The parameter to Check records how many a0 signals have been
received since the last dO or d1, stopping if this reaches 2.

@ Behaviour: CSP-M (verityable)

a0 b0 cO al bl «cl do di
A A A A

|
y

P2

Device) bar

Check (n) =
IT n >= 2 then STOP else
a0 -> Check (n+1) [] dO -> Check (0) [] di1 -> Check (0) []
al -> Check (n) [] bO -> Check (n) [] bl -> Check (n) []
cO0 -> Check (n) [] cl1 > Check (n)

CheckDevice =
Device [] {a0, b0, cO, al, bl, cl, dO, dl} |] Check (0)

If Check (0) stops, CheckDevice will deadlock.
FDR2 reports CheckDevice is deadlock free.

Therefore, Check (0) never stops (& the bad thing can't happen).

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
‘lr Jr) \lr ‘lr
as H
PO P1 el e2
ans
Device) bar i

Note: protocol checking monitors, such as Check, are sometimes

used live to ensure adherence at run-time (e.g. in device drivers).
We are using Check purely for static analysis — it has no role at

run-time and, therefore, no impact on performance.

If Check (0) stops, CheckDevice will deadlock.
FDR2 reports CheckDevice is deadlock free.

Therefore, Check (0) never stops (& the bad thing can't happen).

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
‘l(‘lr) \lr ‘l(
as :
PO P1 el e2
ans
Device) bar)

So far, our checks have concerned safety — namely that our system
will not do harm (incorrect things). This is not enough! After all, the
STOP process does not do incorrect things — it does nothing. STOP

trace refines every process. Trace refinement is not enough.

A CSP failure is a state that a system reaches (represented by its

trace to that point) where it may refuse to synchronise with its
environment on some given set of events.

Process P failure refines Q if (all traces of P are traces of Q) and
(all failures of P are failures of Q).

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
‘l(‘lr) \lr ‘l(
as :
PO P1 el e2
ans
Device) bar)

A CSP failure is a state that a system reaches (represented by its
trace to that point) where it may refuse to synchronise with its
environment on some given set of events.

Process P failure refines Q if (all its traces are traces of Q) and
(all its failures are failures of Q).

This is a powerful statement! P can only do traces of Q (so its safe).

More: the failures of P are allowed by Q. If P and Q execute the same
trace to a state where their environment offers a set of events that Q
will not refuse, then P also will not refuse.

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
‘l(‘lr) \lr ‘l(
as :
PO P1 el e2
ans
Device) bar

A CSP failure is a state that a system reaches (represented by its

trace to that point) where it may refuse to synchronise with its
environment on some given set of events.

Process P failure refines Q if (all its traces are traces of Q) and
(all its failures are failures of Q).

Whenever Q stays alive (engaging with its environment), so does
P (and in the same way). If Q is a specification directly written to
express the required patterns of synchronisation, P will fulfil them.

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
\I/ ‘l/ N \lr \I/ |
PO % P1 | PIAE k2
Device : bar

Recall our informal understanding of (at
least some of) the opening traces of Informal understanding
Device (slides 20-37) ... =————p [0, b0, al, bi]

: : a0, al, b0, bl
We can formalise the expression of an, al, bl, bo%

those traces a bit better ...

What next?

(<9) (=) ()

(* any order)

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
‘l(‘lr) \lr ‘l(
as :
PO P1 el e2
ans
Device) bar

Recall our informal understanding of (at
least some of) the opening traces of Informal understanding
Device (slides 20-37) ... =————p [0, b0, al, bi]

: : a0, al, b0, bl
We can formalise the expression of an, al, bl, bo%

those traces a bit better ... ——————)

[c0] ||l [c1] |il [dO]

interleave

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
‘l(‘l/) \lf ‘l(
as :
PO P1 el e2
ans
Device) bar

Recall our informal understanding of (at
least some of) the opening traces of Informal understanding
Device (slides 20-37) ... =————p [20]
We can formallsg the expression of (o] |l [al. bi]
those traces a bit better ... —————

[cO] |ll [c1] |i| [dO]

interleave

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
‘l(‘lr) \lr ‘l(
as :
PO P1 el e2
ans
Device) bar)

Recall our informal understanding of (at

least some of) the opening traces of Informal understanding
Device (slides 20-37) ... —=——p [20]
We can formalise the expression of [b0] ||l [al, bi]

[c0] ||l [c1] |il [dO]

those traces a bit better ... \

[a0]; ([bO] |l [al, bl]l); ([cO] |ll [c1] |Il [dO])

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
‘l(‘lr) \lr ‘l(
as :
PO P1 el e2
ans
Device) bar)

And, still using our intuitive understanding,
guess the next cycle of events ...

We can formalise the expression of
those traces a bit better ... \

[a0]: ([bO] ||| [al, bl]); ([cO] |l| [c1] |l [dO1);
[a0]; ([bO] |l [al, bl]); ([cO] |Il [c1] |Il [d1])

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
‘l(‘l/) \lr ‘l(
as H
PO P1 el e2
ans
Device) bar i

And, still using our intuitive understanding,
guess the next cycle of events ...

We can formalise the expression of
those traces a bit better ... \ And the rest ..

/

[a0]: ([bO] ||| [al, bl]); ([cO] |l| [c1] |l [dO1);
[a0]; ([bO] |l [al, bl]); ([cO] |Il [c1] |Il [d1])

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 dl
i k i
as :
PO P1 el e2
ans
Device) bar

DeviceSpec =
a0 -> (b0 -> SKIP |||l a1 -> bl -> SKIP);
(cO -> SKIP ||| c1 -> SKIP ||| dO -> SKIP);
a0 -> (b0 -> SKIP ||| a1 -> bl -> SKIP);
(cO -> SKIP ||| c1 -> SKIP ||| d1 > SKIP); DeviceSpec

From such trace expressions, we can _ _
directly write down a €SP process that This generation can

offers all of them to its environment ...

be automated.

[a0]: ([bO] ||| [al, bl]); ([cO] |l| [c1] |l [dO1);
[a0]; ([bO] |l [al, bl]); ([cO] |Il [c1] |Il [d1])

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
‘l(‘lr) \lr ‘l(
as :
PO P1 el e2
ans
Device) bar

DeviceSpec =
a0 -> (b0 -> SKIP |||l a1 -> bl -> SKIP);
(cO -> SKIP ||| c1 -> SKIP ||| dO -> SKIP);
a0 -> (b0 -> SKIP ||| a1 -> bl -> SKIP);
(cO -> SKIP ||| c1 -> SKIP ||| d1 > SKIP); DeviceSpec

DeviceSpec is an explicit specification of all signal patterns we
expect (or need) Device to be able to perform.

FDR2 reports Device failure refines CheckDevice. © © ©
In fact, the reverse is also true — they have exactly the same traces
and failures.

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 dl
i k i
as :
PO P1 el e2
ans
Device) bar

DeviceSpec =
a0 -> (b0 -> SKIP |||l a1 -> bl -> SKIP);
(cO -> SKIP ||| c1 -> SKIP ||| dO -> SKIP);
a0 -> (b0 -> SKIP ||| a1 -> bl -> SKIP);
(cO -> SKIP ||| c1 -> SKIP ||| d1 > SKIP); DeviceSpec

Device was not implemented as DeviceSpec because of the three

iIndependent functions (weapons systems, vision processing and

motion stability) it had to perform. Process-oriented design led to its
three communicating sub-systems.

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
‘l(‘l/) \lr ‘l(
as :
PO P1 el e2
ans
Device) bar

DeviceSpec =
a0 -> (b0 -> SKIP |||l a1 -> bl -> SKIP);
(cO -> SKIP ||| c1 -> SKIP ||| dO -> SKIP);
a0 -> (b0 -> SKIP ||| a1 -> bl -> SKIP);
(cO -> SKIP ||| c1 -> SKIP ||| d1 > SKIP); DeviceSpec

Whilst our intuition indicated that the first two lines of DeviceSpec
reflected the initial behaviour of Device, it was unclear whether the
pattern repeated cleanly as its sub-components started looping.

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
‘l(‘l/) \lr ‘l(
as H
PO P1 el e2
ans
Device) bar i

DeviceSpec =
a0 -> (b0 -> SKIP |||l a1 -> bl -> SKIP);
(cO -> SKIP ||| c1 -> SKIP ||| dO -> SKIP);
a0 -> (b0 -> SKIP ||| a1 -> bl -> SKIP);
(cO -> SKIP ||| c1 -> SKIP ||| d1 > SKIP); DeviceSpec

One way to ensure this is to add another barrier (bar) at the end of
each loop of PO and P1 and half-loop of P2. The failures equivalence
of Device and DeviceSpec shows that the pattern does indeed

repeat cleanly and, so, this overhead is not necessary.

@ Behaviour: CSP-M (verityable)

aO bO cO al b1 cl d0 d1
\I/ ‘l/ N \lr \I/ |
PO % P1 | PIAE k2
Device : bar

DeviceSpec =
a0 -> (b0 -> SKIP |||l a1 -> bl -> SKIP);
(cO -> SKIP ||| c1 -> SKIP ||| dO -> SKIP);
a0 -> (b0 -> SKIP ||| a1 -> bl -> SKIP);
(cO -> SKIP ||| c1 -> SKIP ||| d1 > SKIP); DeviceSpec

Rather than being deduced after implementation, DeviceSpec may
be part of the specification for the behaviour of Device. We certainly
need assurance of the behaviour of Device to use it securely with

other components. All its patterns of synchronisation (for safety and
liveness questions) can be trivially deduced from DeviceSpec.

Reflection

Class experience

The case study presented was developed from one first worked
through in a single lesson of a graduate class in concurrency at
UNLV in the spring of 2010.

They had previously studied a range of concurrency approaches,
including process-oriented material from the Kent “Concurrency
Design and Practice” course (presented at last year’s workshop).

They were comfortable with using eccam-m in non-trivial projects

(thousands of interacting processes), so the example system
here would be considered fairly simple.

Nevertheless, it was appreciated that relying just on intuitive
understanding is unsafe — especially if the application were
safety critical.

Reflection

Class experience

During the exercise, students were given an overview (through
examples) of CSP-M syntax, with semantics defined by relating
back to occam-m syntax and semantics.

The functional nature of CSP-M, compared with the imperative
nature of occam-m, was no particular problem.

Working with FDR2 through its GUI was not very sexy (by
modern GUI standards) — but easy enough.

Checking their own (initial) test sequences for Device signals
was very simple. Correct confirms/rejects were obtained.

Writing safety-checking processes (like Device) for long term
dangers was harder — but they warmed to this with practice.

Reflection

Class experience

What-ifs on the behaviour of the system could be explored and
answered without running any code ... e.g.

If the (internal) ping communications were
removed, does Check still hold?

Do the a0 and al signals strictly alternate?

Do the b0 and bl signals strictly alternate?

If we added an extra bar sync at the end of
each cycle in PO and P1 and half-cycle in P2,

would it make any difference?

If the elevator cabin is not at a floor, might the

. Another exercise ...
floor doors to the elevator shaft still open?

Reflection

occam-1 / CSP-M

occam-m teams well with CSP-M to provide efficient executables
and rich formal analysis.

Of course, it would be better if only one syntactic representation
were needed. We are working on extending occam- to include
verification assertions (about deadlock, livelock, deterrinism and
refinement). Its compiler will generate suitably abstracted CSP-M
and interact with the FDR2 model checker, feeding back results
In terms of the source occam-m program.

Together with the ancient formal Laws of occam Programming *,
this moves occam-m towards a process algebra in its own right.

http://portal .acm.org/citation.cfm?1d=53255

[A.W.Roscoe and C.A.R.Hoare, 1988]

Reflection

Formal verification of the behaviour of concurrent processes has
been achieved — by students — even though they engaged in only
simple reasoning themselves.

The complexity of synchronisation and communication analysed
went far beyond the embarrassingly parallel.

Aside: model checking found an error overlooked in developing
the case study on paper (the need for ping) ... which shows the
necessity for formal checks (especially when those responsible
think they won't make mistakes!).

Further reading: Santa Claus: Formal Analysis of a Process
Oriented Solution *

http:/dor.acm.org/10.1145/1734206.1734211

TOPLAS, [April, 2010]

Final Observation

Can we teach students (those who love to program, anyway)

concurrency so that:

they quickly develop a correct and intuitive understanding of the primitive
mechanisms (e.g. processes, communication, synchronisation, networks)
and higher level patterns (e.g. client-server, phased barrier, I/O-PAR) ... ?

they can use those primitives and patterns with the same fluency as they use
serial computing primitives, without tripping over dark hazards ... ?

they can develop their own patterns when the standard ones don’t apply ... ?

they can use formal methods to verify good behaviour (e.g. freedom from
deadlock and livelock, safety, liveness), without training in the underlying
mathematics (process algebra, denotational semantics) ... ?

they can do this as normal everyday practice, without any sense of fear ... ?

Final Observation

Any guestions?

Can we teach students (those who love to program, anyway)
concurrency so that:

they quickly develop a correct and intuitive understeg e primitive
mechanisms (e.g. processes, communication, Svg 1, hetworks)
and higher level patterns (e.g. client-server, pi 7, IO-PAR) ... ?

they can use those primitives and patteg same fluency as they use
serial computing primitives, without g dark hazards ... ?

they can develop their own paig me standard ones don’t apply ... ?

they can use formal meg 7/ good behaviour (e.g. freedom from
deadlock and liveloclg 11ess), without training in the underlying
mathematics (prog > denotational semantics) ... ?

they can do thiS al everyday practice, without any sense of fear ... ?

