
12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 1

Curricula for Concurrency and Parallelism
SPLASH 2010, 17th. Oct 

Matt Pedersen  and Peter WelchMatt Pedersen  and Peter Welch
School of Computer Science, UNLV, USASchool of Computer Science, UNLV, USA

School of Computing, University of Kent, UKSchool of Computing, University of Kent, UK

Concurrency, Intuition and Formal 
Verification: Yes, We Can!

Concurrency, Intuition and Formal Concurrency, Intuition and Formal 
Verification: Verification: Yes, We Can!Yes, We Can!

phw@kent.ac.ukphw@kent.ac.uk
matt@cs.unlv.edumatt@cs.unlv.edu

a b

a

b



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 2

Not only Not only Not only 

cancan we (and we (and shouldshould we) teach concurrency at the start of we) teach concurrency at the start of 
the undergraduate CS curriculum the undergraduate CS curriculum ……

But also But also But also 

we we cancan (and we (and we shouldshould) teach formal analysis and verification ) teach formal analysis and verification 
of this concurrency at the same time of this concurrency at the same time ……

A ThesisA ThesisA Thesis (for which we have experimental evidence)(for which we have experimental evidence)



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 3

Not only Not only Not only 

cancan we (and we (and shouldshould we) teach concurrency at the start of we) teach concurrency at the start of 
the undergraduate CS curriculum the undergraduate CS curriculum ……

A ThesisA ThesisA Thesis (for which we have experimental evidence)(for which we have experimental evidence)

Because itBecause it’’s s 
therethere

for complexityfor complexity

for performancefor performance

Because it Because it 
scalesscales

Process 
Orientation
Process 

Orientation

CSP / CSP / ππ--calculuscalculus
occamoccam--ππ / JCSP/ JCSP

Because it Because it 
simplifiessimplifies



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 4

Not only Not only Not only 

cancan we (and we (and shouldshould we) teach concurrency at the start of we) teach concurrency at the start of 
the undergraduate CS curriculum the undergraduate CS curriculum ……

A ThesisA ThesisA Thesis (for which we have experimental evidence)(for which we have experimental evidence)

Fundamental primitives of software engineeringFundamental primitives of software engineering

All are important. All are simple. All are available.All are important. All are simple. All are available.

Sequence, variables, assignment, parameters, 
concurrency, channels, synchronisation, …
Sequence, variables, assignment, parameters, Sequence, variables, assignment, parameters, 
concurrencyconcurrency, , channelschannels, , synchronisationsynchronisation, , ……

Because itBecause it’’s s 
therethere



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 5

But also But also But also 

we we cancan (and we (and we shouldshould) teach formal analysis and verification ) teach formal analysis and verification 
of this concurrency at the same time of this concurrency at the same time ……

A ThesisA ThesisA Thesis (for which we have experimental evidence)(for which we have experimental evidence)

Complex and high-performance systems cannot avoid 
concurrent design, implementation and reasoning.
Complex and highComplex and high--performance systems cannot avoid performance systems cannot avoid 
concurrent design, implementation concurrent design, implementation and reasoningand reasoning..

Common concurrency bugs are intermittent – not 
repeatable on demand. Untestable in practice.
Common concurrency bugs are intermittent Common concurrency bugs are intermittent –– not not 
repeatable on demand. repeatable on demand. Untestable in practiceUntestable in practice..

We stand on the shoulders of giants (who made the 
theory and model checkers). We verify programs just 
by writing programs … it becomes everyday practice. 

We stand on the shoulders of giants (who made the We stand on the shoulders of giants (who made the 
theory and model checkers). theory and model checkers). We verify programs just We verify programs just 
by writing programs by writing programs …… it becomes everyday practice. it becomes everyday practice. 



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 6

Example: autonomous robot componentExample: Example: autonomous robot componentautonomous robot component

The following example has been developed from one 
first worked through in a single lesson of a graduate 
class in concurrency at UNLV in the spring of 2010.

The following example has been developed from one The following example has been developed from one 
first worked through in a single lesson of a graduate first worked through in a single lesson of a graduate 
class in concurrency at class in concurrency at UNLVUNLV in the spring of 2010.in the spring of 2010.



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 7

The following example has been developed from one 
first worked through in a single lesson of a graduate 
class in concurrency at UNLV in the spring of 2010.

The following example has been developed from one The following example has been developed from one 
first worked through in a single lesson of a graduate first worked through in a single lesson of a graduate 
class in concurrency at class in concurrency at UNLVUNLV in the spring of 2010.in the spring of 2010.

Example: autonomous robot componentExample: Example: autonomous robot componentautonomous robot component
a0a0 b0b0 c0c0 a1a1 b1b1 c1c1 d0d0 d1d1

DeviceDevice

DeviceDevice : real: real--time controller for 8 channels (4 input, 4 output).time controller for 8 channels (4 input, 4 output).



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 8

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Example: autonomous robot componentExample: Example: autonomous robot componentautonomous robot component

DeviceDevice : real: real--time controller for 8 channels (4 input, 4 output).time controller for 8 channels (4 input, 4 output).

There are 3 subThere are 3 sub--components: components: P0P0 (weapons systems)(weapons systems),,
P1P1 (vision processing)(vision processing) and and P2P2 (motion stabilizer)(motion stabilizer)..

They exchange information over internal channels (They exchange information over internal channels (askask, , ansans, , 
pingping) and all coordinate actions with an internal barrier () and all coordinate actions with an internal barrier (barbar). ). 



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 9

Example: autonomous robot componentExample: Example: autonomous robot componentautonomous robot component

They exchange information over internal They exchange information over internal channelschannels ((askask, , ansans, , 
pingping) and all coordinate actions with an internal ) and all coordinate actions with an internal barrierbarrier ((barbar). ). 

CSPCSP semantics apply. semantics apply. Channel communicationChannel communication is unbuffered is unbuffered 
(sender waits for receiver and vice(sender waits for receiver and vice--versa).  Any process versa).  Any process 
reaching a barrierreaching a barrier waits for waits for allall processes to processes to reach the barrierreach the barrier..

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 10

DeviceDevice

askask

ansans
P0P0 P1P1 P2P2

barbar

pingping

©© 2003 Hasbro and TakaraTomy2003 Hasbro and TakaraTomy



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 11

Behaviour: two representationsBehaviour: Behaviour: two representationstwo representations

occamoccam--ππ: for compiling to a runnable system.: for compiling to a runnable system.
[memory overheads <= 32 bytes per process / synchronisation over[memory overheads <= 32 bytes per process / synchronisation overheads heads 
of order tens of nanoseconds / eats multicore nodes for breakfasof order tens of nanoseconds / eats multicore nodes for breakfast.]t.]

CSPCSP: for formal analysis.: for formal analysis.
[FDR2 model checker + other (simple) formal reasoning.][FDR2 model checker + other (simple) formal reasoning.]

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 12

Behaviour: two representationsBehaviour: Behaviour: two representationstwo representations

occamoccam--ππ: for compiling to a runnable system.: for compiling to a runnable system.
[memory overheads <= 32 bytes per process / synchronisation over[memory overheads <= 32 bytes per process / synchronisation overheads heads 
of order tens of nanoseconds / eats multicore nodes for breakfasof order tens of nanoseconds / eats multicore nodes for breakfast.]t.]

CSPCSP: for formal analysis.: for formal analysis.
[FDR2 model checker + other (simple) formal reasoning.][FDR2 model checker + other (simple) formal reasoning.]

occam-π syntax / semantics has an injective mapping to 

CSP. Our students had little trouble shifting between 

them. A tool exists to generate CSP automatically from 

occam-π … not yet ready for use in the classroom.occamoccam--ππ syntax / semantics has an injective mapping to 

CSPCSP. Our students had little trouble shifting between 

them. A tool exists to generate CSPCSP automatically from 

occamoccam--ππ … not yet ready for use in the classroom.

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 13

Behaviour: what are we looking for?Behaviour: Behaviour: what are we looking for?what are we looking for?

deadlockdeadlock: : mightmight it ever stop?it ever stop?
[e.g. [e.g. P0P0 and and P2P2 want to synchronise on want to synchronise on barbar, but , but P1P1 wants to wants to pingping.].]

livelocklivelock: : mightmight it get busy it get busy …… but refuse all external signals?but refuse all external signals?
[e.g. [e.g. P0P0, , P1P1 and and P2P2 start engaging in an infinite sequence of internal start engaging in an infinite sequence of internal 
channel or barrier synchronisations (on channel or barrier synchronisations (on askask, , ansans, , pingping and and barbar).]).]

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 14

Behaviour: what are we looking for?Behaviour: Behaviour: what are we looking for?what are we looking for?

safetysafety: : mightmight it ever engage in an incorrect sequence of it ever engage in an incorrect sequence of 
external signals?external signals?

livenessliveness: : willwill it engage in correct sequences of external it engage in correct sequences of external 
signals, as required?signals, as required?
[Some specs allow alternative sequences to be performed [Some specs allow alternative sequences to be performed –– all are all are 
correct, but an implementation must only do one and is free to ccorrect, but an implementation must only do one and is free to choose.]hoose.]

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 15

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

For the behaviour analysis in this example, data values 

and computations are not relevant.  For simplicity, they 

are omitted in these codes, with all message content 

abstracted to zero.

For the behaviour analysis in this example, data values 

and computations are not relevant.  For simplicity, they 

are omitted in these codes, with all message content 

abstracted to zero.

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 16

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!, , BARRIERBARRIER barbar))
WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer (will depend on x and y)(will depend on x and y)
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c0 ! 0c0 ! 0

::

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping
P0P0



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 17

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 18

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?, , BARRIERBARRIER barbar))
WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 19

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

PROCPROC DeviceDevice ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))
CHAN INT ask, ans, ping:CHAN INT ask, ans, ping:
BARRIER bar:BARRIER bar:
PAR ENROLL barPAR ENROLL bar
P0P0 ((a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!, , barbar))
P1P1 ((a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!, , barbar))
P2P2 ((d0!d0!, , d1!d1!, , ping?ping?, , barbar))

::

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 20

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

What patterns of What patterns of 
external (external (blueblue))
signalling are signalling are 
possible from possible from 
DeviceDevice??

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 21

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s first?s first?

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 22

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s first?s first?

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 23

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s first?s first?

a0a0

[a0][a0][a0]

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 24

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s second?s second?

[a0][a0][a0]

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 25

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s second?s second?

[a0][a0][a0]

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 26

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s second?s second?

a1a1b0b0 oror

[a0][a0][a0]

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 27

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

[a0][a0][a0]

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If          second, then?If          second, then?b0b0

[a0, b0][a0, b0][a0, b0]

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 28

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

[a0, b0][a0, b0][a0, b0]

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If          second, then?If          second, then?b0b0

a1a1

[a0, b0, a1][a0, b0, a1][a0, b0, a1]

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 29

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If          second, then?If          second, then?b0b0

a1a1 b1b1thenthen

[a0, b0, a1][a0, b0, a1][a0, b0, a1][a0, b0, a1, b1][a0, b0, a1, b1][a0, b0, a1, b1]

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 30

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If          second, then?If          second, then?b0b0

a1a1 b1b1thenthen

[a0, b0, a1, b1][a0, b0, a1, b1][a0, b0, a1, b1]

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 31

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s second?s second?

a1a1b0b0 oror

[a0][a0][a0]

InformalInformal
IntuitiveIntuitive

backtrackingbacktracking …



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 32

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If          second, then?If          second, then?a1a1

[a0][a0][a0][a0, a1][a0, a1][a0, a1]

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 33

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

[a0, a1][a0, a1][a0, a1]

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If          second, then?If          second, then?a1a1

b1b1b0b0 andand

(* any order)(* any order)

**

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 34

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

[a0, a1][a0, a1][a0, a1]

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If          second, then?If          second, then?a1a1

b1b1b0b0 andand

[a0, a1, b0, b1]
[a0, a1, b1, b0]
[a0, a1, b0, b1][a0, a1, b0, b1]
[a0, a1, b1, b0][a0, a1, b1, b0]

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 35

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

[a0, a1, b0, b1]
[a0, a1, b1, b0]
[a0, a1, b0, b1][a0, a1, b0, b1]
[a0, a1, b1, b0][a0, a1, b1, b0]

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If          second, then?If          second, then?a1a1

b1b1b0b0 andand

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 36

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

[a0, b0, a1, b1]
[a0, a1, b0, b1]
[a0, a1, b1, b0]

[a0, b0, a1, b1][a0, b0, a1, b1]
[a0, a1, b0, b1][a0, a1, b0, b1]
[a0, a1, b1, b0][a0, a1, b1, b0]

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

What next?What next?

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 37

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

[a0, b0, a1, b1]
[a0, a1, b0, b1]
[a0, a1, b1, b0]

[a0, b0, a1, b1][a0, b0, a1, b1]
[a0, a1, b0, b1][a0, a1, b0, b1]
[a0, a1, b1, b0][a0, a1, b1, b0]

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

d0d0c0c0

(* any order)(* any order)

**
c1c1

What next?What next?

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 38

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

ThatThat’’s s 1818 possible possible 
orderings of the first orderings of the first 77
signals.signals.

What happens when What happens when 
the subthe sub--processes processes 
start looping?start looping?

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 39

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0     ask ! 0     ---- ask questionask question
ans ? x     ans ? x     ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar    SYNC bar    ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0    ping ! 0    ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x     ask ? x     ---- take questiontake question
a0 ? ya0 ? y
ans ! 0     ans ! 0     ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar    SYNC bar    ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar    SYNC bar    ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x    ping ? x    ---- receive updatereceive update
SYNC bar    SYNC bar    ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x    ping ? x    ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

Could Could P0P0 signal signal againagain
on on a0a0 beforebefore P2P2 gave gave 
its first its first d0d0??

Are there some more Are there some more 
possible possible firstfirst--77 signal signal 
sequences?sequences?

InformalInformal
IntuitiveIntuitive



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 40

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)

We can formally verify the previous intuition (which was only We can formally verify the previous intuition (which was only 
about the opening behaviour of the system) and answer the about the opening behaviour of the system) and answer the 
open questions (and more) about its continuous behaviour open questions (and more) about its continuous behaviour 
with a with a CSPCSP representation.representation.

We use We use CSPCSP--MM, the machine readable form used by the , the machine readable form used by the FDR2FDR2
model checker.model checker. CSPCSP--MM is a is a declarativedeclarative ((functionalfunctional) ) language language ––
loopsloops map to map to tail recursionstail recursions.  Students who enjoy programming .  Students who enjoy programming 
have no problem learning new syntax have no problem learning new syntax (it(it’’s particularly easy when s particularly easy when 
the semantics remain unchanged)the semantics remain unchanged) –– but they need to be told why!but they need to be told why!

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

FormalFormal



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 41

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)

CSPCSP--MM lets us abstract the channel communications further lets us abstract the channel communications further 
by omitting the data sent (always zero in our example) and by omitting the data sent (always zero in our example) and 
the direction of communication (irrelevant here).the direction of communication (irrelevant here).

CSPCSP processes synchronise only on processes synchronise only on eventsevents, which capture the , which capture the 
notions of pointnotions of point--toto--point channels and multiway barriers. point channels and multiway barriers. CSPCSP--MM
calls them all calls them all channelschannels..

In the following In the following CSPCSP--MM, we further simplify things by omitting , we further simplify things by omitting 
process parameters and accessing all channels from global process parameters and accessing all channels from global 
declaration. declaration. [We could have done this with the [We could have done this with the occamoccam--ππ ……]]

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

FormalFormal



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 42

channel channel a0a0, , b0b0, , c0c0, , a1a1, , b1b1, , c1c1, , d0d0, , d1d1,, askask, , ansans, , pingping, , barbar

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)

PRO
CPRO
C P0P0

((CH
AN 

INT
CHA

N I
NT a0?a0?,

 , b0
?b0?,
 , c0

!c0!,
 , as

k?ask
?, , a

ns!ans
!,,

BAR
RIE

R
BAR

RIE
R barbar)

)

WHI
LE 

TRU
E

WHI
LE 

TRU
E

INT
 x,

 y,
 z:

INT
 x,

 y,
 z:

SEQSEQ
ask

 ? 
x  

   

ask
 ? 

x  
   -

--- tak
e q

ues
tio

n

tak
e q

ues
tio

n

a0 
? ya0 
? y

ans
 ! 

0  
   

ans
 ! 

0  
   -

--- ret
urn

 an
swe

r

ret
urn

 an
swe

r

b0 
? zb0 
? z

SYN
C b

ar 
   

SYN
C b

ar 
   -

--- wai
t f

or 
oth

ers

wai
t f

or 
oth

ers

c0 
! 0c0 
! 0

::

P0P0 = = askask --> > a0a0 --> > ansans --> > b0b0 --> > barbar --> > c0c0 --> > P0P0

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

FormalFormal



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 43

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

channel channel a0a0, , b0b0, , c0c0, , a1a1, , b1b1, , c1c1, , d0d0, , d1d1,, askask, , ansans, , pingping, , barbar

P0P0 = = askask --> > a0a0 --> > ansans --> > b0b0 --> > barbar --> > c0c0 --> > P0P0

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)

PROC
PROC

P1P1 ((CHAN INT

CHAN INT
a1?
a1?, , b1?

b1?, , c1!
c1!, , ask!

ask!, , ans?
ans?, , ping!

ping!,,

BARRIER

BARRIER
bar
bar))

WHILE TRUE

WHILE TRUE
INT x, y, z:

INT x, y, z:

SEQ
SEQ
ask ! 0     

ask ! 0     ---- ask question

ask question

ans ? x     

ans ? x     ---- wait for answer

wait for answer

a1 ? y
a1 ? yb1 ? z
b1 ? zSYNC bar    

SYNC bar    ---- wait for the others

wait for the others

c1 ! 0
c1 ! 0ping ! 0    

ping ! 0    ---- update neighbour

update neighbour

::

P1P1 = = askask --> > ansans --> > a1a1 --> > b1b1 --> > barbar --> > c1c1 --> > pingping --> > P1P1

FormalFormal



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 44

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

channel channel a0a0, , b0b0, , c0c0, , a1a1, , b1b1, , c1c1, , d0d0, , d1d1,, askask, , ansans, , pingping, , barbar

P0P0 = = askask --> > a0a0 --> > ansans --> > b0b0 --> > barbar --> > c0c0 --> > P0P0

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)

P1P1 = = askask --> > ansans --> > a1a1 --> > b1b1 --> > barbar --> > c1c1 --> > pingping --> > P1P1

PROCPROC
P2P2 ((CHA

N IN
T

CHAN
 INT

d0!d0!,
 , d1

!d1!,
 , pi

ng?ping
?,,

BARR
IER

BARR
IER

barbar))

WHIL
E TR

UE

WHIL
E TR

UE

INT 
x:

INT 
x:

SEQSEQ
SYNC

 bar
   

 

SYNC
 bar

   
 ----

wait
 for

 ot
hers

wait
 for

 ot
hers

d0 !
 0

d0 !
 0

ping
 ? x

   
 

ping
 ? x

   
 ----

rece
ive 

upd
ate

rece
ive 

upd
ate

SYNC
 bar

   
 

SYNC
 bar

   
 ----

wait
 for

 ot
hers

wait
 for

 ot
hers

d1 !
 0

d1 !
 0

ping
 ? x

   
 

ping
 ? x

   
 ----

rece
ive 

upd
ate

rece
ive 

upd
ate

::P2P2 = = barbar --> > d0d0 --> > pingping --> > barbar --> > d1d1 --> > pingping --> > P2P2

FormalFormal



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 45

channel channel a0a0, , b0b0, , c0c0, , a1a1, , b1b1, , c1c1, , d0d0, , d1d1,, askask, , ansans, , pingping, , barbar

P0P0 = = askask --> > a0a0 --> > ansans --> > b0b0 --> > barbar --> > c0c0 --> > P0P0

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)

P1P1 = = askask --> > ansans --> > a1a1 --> > b1b1 --> > barbar --> > c1c1 --> > pingping --> > P1P1

P2P2 = = barbar --> > d0d0 --> > pingping --> > barbar --> > d1d1 --> > pingping --> > P2P2

P0P1P0P1 = (= (P0P0 [| {[| {askask,, ansans,, barbar} |] } |] P1P1) ) \\ {{askask,, ansans}}

DeviceDevice = (= (P0P1P0P1 [| {[| {pingping,, barbar} |] } |] P2P2) ) \\ {{pingping,, barbar}}

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

FormalFormal



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 46

channel channel a0a0, , b0b0, , c0c0, , a1a1, , b1b1, , c1c1, , d0d0, , d1d1,, askask, , ansans, , pingping, , barbar

P0P0 = = askask --> > a0a0 --> > ansans --> > b0b0 --> > barbar --> > c0c0 --> > P0P0

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)

P1P1 = = askask --> > ansans --> > a1a1 --> > b1b1 --> > barbar --> > c1c1 --> > pingping --> > P1P1

P2P2 = = barbar --> > d0d0 --> > pingping --> > barbar --> > d1d1 --> > pingping --> > P2P2

P0P1P0P1 = (= (P0P0 [| {[| {askask,, ansans,, barbar} |] } |] P1P1) ) \\ {{askask,, ansans}}

DeviceDevice = (= (P0P1P0P1 [| {[| {pingping,, barbar} |] } |] P2P2) ) \\ {{pingping,, barbar}}

FormalFormal

Loading the system below into Loading the system below into FDR2FDR2, we discover straight away that , we discover straight away that 
DeviceDevice is is free from deadlock and livelockfree from deadlock and livelock –– just click the buttons!just click the buttons!

☺ ☺ ☺ ☺ ☺



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 47

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal

[a0, b0, a1, b1]
[a0, a1, b0, b1]
[a0, a1, b1, b0]

[a0, b0, a1, b1][a0, b0, a1, b1]
[a0, a1, b0, b1][a0, a1, b0, b1]
[a0, a1, b1, b0][a0, a1, b1, b0]

c0c0 d0d0

(* any order)(* any order)

**
c1c1

What next?What next?

Informal understandingInformal understanding

T0T0 = = a0a0 --> > b0b0 --> > a1a1 --> > b1b1 --> > d0d0 --> > c0c0 --> > c1c1 --> > STOPSTOP
T1T1 = = a0a0 --> > b0b0 --> > a1a1 --> > d0d0 --> > b1b1 --> > c0c0 --> > c1c1 --> > STOPSTOP

And ask: does each And ask: does each trace refinetrace refine DeviceDevice??

Define processes that have no Define processes that have no 
choice in the matter choice in the matter …… e.g.e.g.

To check whether particular event To check whether particular event 
sequences sequences (traces)(traces) may initially be may initially be 
performed by performed by DeviceDevice …… e.g.e.g.

IntuitionIntuition

Process Process PP trace refinestrace refines QQ if all if all tracestraces of of PP are are tracestraces of of QQ..

Q [T= PQQ [T= [T= PP



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 48

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal

[a0, b0, a1, b1]
[a0, a1, b0, b1]
[a0, a1, b1, b0]

[a0, b0, a1, b1][a0, b0, a1, b1]
[a0, a1, b0, b1][a0, a1, b0, b1]
[a0, a1, b1, b0][a0, a1, b1, b0]

c0c0 d0d0

(* any order)(* any order)

**
c1c1

What next?What next?

Informal understandingInformal understanding

T0T0 = = a0a0 --> > b0b0 --> > a1a1 --> > b1b1 --> > d0d0 --> > c0c0 --> > c1c1 --> > STOPSTOP
T1T1 = = a0a0 --> > b0b0 --> > a1a1 --> > d0d0 --> > b1b1 --> > c0c0 --> > c1c1 --> > STOPSTOP

Define processes that have no Define processes that have no 
choice in the matter choice in the matter …… e.g.e.g.

To check whether particular event To check whether particular event 
sequences sequences (traces)(traces) may initially be may initially be 
performed by performed by DeviceDevice …… e.g.e.g.

FDR2FDR2 reports that reports that T0T0 trace refinestrace refines DeviceDevice …… but but T1T1 does does not not ––
which confirms our intuition.  which confirms our intuition.  ☺☺☺☺☺☺

Device [T= T0DeviceDevice [T= [T= T0T0 ✔ Device [T= T1DeviceDevice [T= [T= T1T1 ✗

IntuitionIntuition



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 49

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal

[a0, b0, a1, b1]
[a0, a1, b0, b1]
[a0, a1, b1, b0]

[a0, b0, a1, b1][a0, b0, a1, b1]
[a0, a1, b0, b1][a0, a1, b0, b1]
[a0, a1, b1, b0][a0, a1, b1, b0]

c0c0 d0d0

(* any order)(* any order)

**
c1c1

What next?What next?

Informal understandingInformal understanding

T0T0 = = a0a0 --> > b0b0 --> > a1a1 --> > b1b1 --> > d0d0 --> > c0c0 --> > c1c1 --> > STOPSTOP
T1T1 = = a0a0 --> > b0b0 --> > a1a1 --> > d0d0 --> > b1b1 --> > c0c0 --> > c1c1 --> > STOPSTOP

Define processes that have no Define processes that have no 
choice in the matter choice in the matter …… e.g.e.g.

To check whether particular event To check whether particular event 
sequences sequences (traces)(traces) may initially be may initially be 
performed by performed by DeviceDevice …… e.g.e.g.

Device [T= T0DeviceDevice [T= [T= T0T0 ✔

Clearly, Clearly, [a0,[a0, b0,b0, a1,a1, b1,b1, d0,d0, c0,c0, c1]c1] is a traceis a trace of T0T0. . 
Therefore, it is also a trace of Therefore, it is also a trace of DeviceDevice..

IntuitionIntuition



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 50

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal

[a0, b0, a1, b1]
[a0, a1, b0, b1]
[a0, a1, b1, b0]

[a0, b0, a1, b1][a0, b0, a1, b1]
[a0, a1, b0, b1][a0, a1, b0, b1]
[a0, a1, b1, b0][a0, a1, b1, b0]

c0c0 d0d0

(* any order)(* any order)

**
c1c1

What next?What next?

Informal understandingInformal understanding

T0T0 = = a0a0 --> > b0b0 --> > a1a1 --> > b1b1 --> > d0d0 --> > c0c0 --> > c1c1 --> > STOPSTOP
T1T1 = = a0a0 --> > b0b0 --> > a1a1 --> > d0d0 --> > b1b1 --> > c0c0 --> > c1c1 --> > STOPSTOP

Define processes that have no Define processes that have no 
choice in the matter choice in the matter …… e.g.e.g.

To check whether particular event To check whether particular event 
sequences sequences (traces)(traces) may initially be may initially be 
performed by performed by DeviceDevice …… e.g.e.g.

Device [T= T1DeviceDevice [T= [T= T1T1 ✗

At least one trace of At least one trace of T1T1 is is notnot a trace of a trace of DeviceDevice.  Comparing .  Comparing T0T0
and and T1T1, the fault lies in the mis-ordering of d0d0 and and b1b1..

IntuitionIntuition



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 51

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

LetLet’’s ask a more difficult question about the continuous running of s ask a more difficult question about the continuous running of 
the system. Suppose the robot would do something the system. Suppose the robot would do something very badvery bad if its if its 
controller controller DeviceDevice were ever to signal were ever to signal twicetwice on on a0a0 without a signal 
on d0d0 or or d1d1 in betweenin between. Might this ever happen?. Might this ever happen?

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal SafetySafety

Simple:Simple: write a process checking the signals to/from write a process checking the signals to/from DeviceDevice, , 
looking for the bad scenario and deadlocks if spotted. This is jlooking for the bad scenario and deadlocks if spotted. This is just ust 
programming programming ……



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 52

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal SafetySafety

CheckCheck ((nn) =) =
if if n >= 2n >= 2 then then STOPSTOP elseelse
a0a0 --> > CheckCheck ((n+1n+1) ) [][] d0d0 --> > CheckCheck ((00) ) [][] d1d1 --> > CheckCheck ((00) ) [][]
a1a1 --> > CheckCheck ((nn)   )   [][] b0b0 --> > CheckCheck ((nn) ) [][] b1b1 --> > CheckCheck ((nn) ) [][]
c0c0 --> > CheckCheck ((nn)   )   [][] c1c1 --> > CheckCheck ((nn))

Simple:Simple: write a process checking the signals to/from write a process checking the signals to/from DeviceDevice, , 
looking for the bad scenario and deadlocks if spotted. This is jlooking for the bad scenario and deadlocks if spotted. This is just ust 
programming programming ……



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 53

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal SafetySafety

The operator The operator ““[][]”” means wait for one or more of the operand means wait for one or more of the operand 
processes processes to become ableto become able to run to run …… choose one of them and run.choose one of them and run.

CheckCheck ((nn) =) =
if if n >= 2n >= 2 then then STOPSTOP elseelse
a0a0 --> > CheckCheck ((n+1n+1) ) [][] d0d0 --> > CheckCheck ((00) ) [][] d1d1 --> > CheckCheck ((00) ) [][]
a1a1 --> > CheckCheck ((nn)   )   [][] b0b0 --> > CheckCheck ((nn) ) [][] b1b1 --> > CheckCheck ((nn) ) [][]
c0c0 --> > CheckCheck ((nn)   )   [][] c1c1 --> > CheckCheck ((nn))



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 54

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal SafetySafety

The parameter to The parameter to CheckCheck records how many records how many a0a0 signals have been signals have been 
received since the last received since the last d0d0 or or d1d1, stopping if this reaches 2., stopping if this reaches 2.

CheckCheck ((nn) =) =
if if n >= 2n >= 2 then then STOPSTOP elseelse
a0a0 --> > CheckCheck ((n+1n+1) ) [][] d0d0 --> > CheckCheck ((00) ) [][] d1d1 --> > CheckCheck ((00) ) [][]
a1a1 --> > CheckCheck ((nn)   )   [][] b0b0 --> > CheckCheck ((nn) ) [][] b1b1 --> > CheckCheck ((nn) ) [][]
c0c0 --> > CheckCheck ((nn)   )   [][] c1c1 --> > CheckCheck ((nn))



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 55

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal SafetySafety

If If CheckCheck (0)(0) stops, stops, CheckDeviceCheckDevice will deadlock.will deadlock.

CheckCheck ((nn) =) =
if if n >= 2n >= 2 then then STOPSTOP elseelse
a0a0 --> > CheckCheck ((n+1n+1) ) [][] d0d0 --> > CheckCheck ((00) ) [][] d1d1 --> > CheckCheck ((00) ) [][]
a1a1 --> > CheckCheck ((nn)   )   [][] b0b0 --> > CheckCheck ((nn) ) [][] b1b1 --> > CheckCheck ((nn) ) [][]
c0c0 --> > CheckCheck ((nn)   )   [][] c1c1 --> > CheckCheck ((nn))

CheckDeviceCheckDevice ==
DeviceDevice [| {[| {a0a0,, b0b0,, c0c0,, a1a1,, b1b1,, c1c1,, d0d0,, d1d1} |] } |] Check (0)Check (0)

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

FDR2FDR2 reports reports CheckDeviceCheckDevice is deadlock free.is deadlock free.
Therefore, Therefore, CheckCheck (0)(0) never stops never stops (& the bad thing can(& the bad thing can’’t happen)t happen)..

Q.E.D.Q.E.D.Q.E.D.



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 56

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal SafetySafety

If If CheckCheck (0)(0) stops, stops, CheckDeviceCheckDevice will deadlock.will deadlock.

Note:Note: protocol checking monitors, such as protocol checking monitors, such as CheckCheck, are sometimes , are sometimes 
used live to ensure adherence at runused live to ensure adherence at run--time (e.g. in device drivers). time (e.g. in device drivers). 
We are using We are using CheckCheck purely for static analysis purely for static analysis –– it has no role at it has no role at 
runrun--time and, therefore, no impact on performance. time and, therefore, no impact on performance. 

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

FDR2FDR2 reports reports CheckDeviceCheckDevice is deadlock free.is deadlock free. Q.E.D.Q.E.D.Q.E.D.

Therefore, Therefore, CheckCheck (0)(0) never stops never stops (& the bad thing can(& the bad thing can’’t happen)t happen)..



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 57

So far, our checks have concerned So far, our checks have concerned safetysafety –– namely that our system namely that our system 
will not do harm (incorrect things). This is not enough! After awill not do harm (incorrect things). This is not enough! After all, the ll, the 
STOPSTOP process does not do incorrect thingsprocess does not do incorrect things – it does nothing. does nothing. STOPSTOP
trace refinestrace refines every process. every process. Trace refinementTrace refinement is not enough.is not enough.

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

A CSP failure is a state that a system reaches (represented by its 
trace to that point) where it may refuse to synchronise with its 
environment on some given set of events.

A A CSPCSP failurefailure is a state that a system reaches (represented by its is a state that a system reaches (represented by its 
tracetrace to that point) where it to that point) where it may refuse to synchronisemay refuse to synchronise with its with its 
environment on some given set of events.environment on some given set of events.

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Process Process PP failure refinesfailure refines QQ if (all if (all tracestraces of of PP are are tracestraces of of QQ) and) and
(all (all failuresfailures of of PP are are failuresfailures of of QQ).).



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 58

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

A CSP failure is a state that a system reaches (represented by its 
trace to that point) where it may refuse to synchronise with its 
environment on some given set of events.

A A CSPCSP failurefailure is a state that a system reaches (represented by its is a state that a system reaches (represented by its 
tracetrace to that point) where it to that point) where it may refuse to synchronisemay refuse to synchronise with its with its 
environment on some given set of events.environment on some given set of events.

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Process Process PP failure refinesfailure refines QQ if (all its if (all its tracestraces are are tracestraces of of QQ) and) and
(all its (all its failuresfailures are are failuresfailures of of QQ).).

This is a powerful statement!  This is a powerful statement!  PP can only do can only do tracestraces of of QQ (so its safe). (so its safe). 
More:More: the the failuresfailures of of PP are allowed by are allowed by QQ. If . If PP and and QQ execute the same execute the same 
trace to a state where their environment offers a set of events trace to a state where their environment offers a set of events that that QQ
will not refuse, then will not refuse, then PP also will not refuse. also will not refuse. 



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 59

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

A CSP failure is a state that a system reaches (represented by its 
trace to that point) where it may refuse to synchronise with its 
environment on some given set of events.

A A CSPCSP failurefailure is a state that a system reaches (represented by its is a state that a system reaches (represented by its 
tracetrace to that point) where it to that point) where it may refuse to synchronisemay refuse to synchronise with its with its 
environment on some given set of events.environment on some given set of events.

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Whenever Q stays alive (engaging with its environment), so does 
P (and in the same way).  If Q is a specification directly written to 
express the required patterns of synchronisation, P will fulfil them.

Whenever Whenever QQ stays alive (engaging with its environment), so does stays alive (engaging with its environment), so does 
PP (and in the same way).  If (and in the same way).  If QQ is a specification directly written to is a specification directly written to 
express the required patterns of synchronisation, express the required patterns of synchronisation, PP will fulfil them.will fulfil them.

Process Process PP failure refinesfailure refines QQ if (all its if (all its tracestraces are are tracestraces of of QQ) and) and
(all its (all its failuresfailures are are failuresfailures of of QQ).).



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 60

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

[a0, b0, a1, b1]
[a0, a1, b0, b1]
[a0, a1, b1, b0]

[a0, b0, a1, b1][a0, b0, a1, b1]
[a0, a1, b0, b1][a0, a1, b0, b1]
[a0, a1, b1, b0][a0, a1, b1, b0]

c0c0 d0d0

(* any order)(* any order)

**
c1c1

What next?What next?

Informal understandingInformal understanding
Recall our informal understanding of (at Recall our informal understanding of (at 
least some of) the opening traces of least some of) the opening traces of 
DeviceDevice (slides 20(slides 20--37)37) ……

We can formalise the expression of We can formalise the expression of 
those traces a bit better those traces a bit better ……



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 61

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Recall our informal understanding of (at Recall our informal understanding of (at 
least some of) the opening traces of least some of) the opening traces of 
DeviceDevice (slides 20(slides 20--37)37) ……

Informal understandingInformal understanding

[c0] ||| [c1] ||| [d0][c0] [c0] |||||| [c1] [c1] |||||| [d0][d0]

We can formalise the expression of We can formalise the expression of 
those traces a bit better those traces a bit better ……

[a0, b0, a1, b1]
[a0, a1, b0, b1]
[a0, a1, b1, b0]

[a0, b0, a1, b1][a0, b0, a1, b1]
[a0, a1, b0, b1][a0, a1, b0, b1]
[a0, a1, b1, b0][a0, a1, b1, b0]

interleaveinterleave



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 62

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Recall our informal understanding of (at Recall our informal understanding of (at 
least some of) the opening traces of least some of) the opening traces of 
DeviceDevice (slides 20(slides 20--37)37) ……

[a0][a0][a0]

Informal understandingInformal understanding

We can formalise the expression of We can formalise the expression of 
those traces a bit better those traces a bit better ……

[b0] ||| [a1, b1][b0] [b0] |||||| [a1, b1][a1, b1]

[c0] ||| [c1] ||| [d0][c0] [c0] |||||| [c1] [c1] |||||| [d0][d0]

interleaveinterleave



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 63

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Recall our informal understanding of (at Recall our informal understanding of (at 
least some of) the opening traces of least some of) the opening traces of 
DeviceDevice (slides 20(slides 20--37)37) ……

[a0][a0][a0]

Informal understandingInformal understanding

We can formalise the expression of We can formalise the expression of 
those traces a bit better those traces a bit better ……

[b0] ||| [a1, b1][b0] [b0] |||||| [a1, b1][a1, b1]

[c0] ||| [c1] ||| [d0][c0] [c0] |||||| [c1] [c1] |||||| [d0][d0]

[a0]; ([b0] ||| [a1, b1]); ([c0] ||| [c1] ||| [d0])[a0]; ([b0] [a0]; ([b0] |||||| [a1, b1]); ([c0] [a1, b1]); ([c0] |||||| [c1] [c1] |||||| [d0])[d0])



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 64

[a0]; ([b0] ||| [a1, b1]); ([c0] ||| [c1] ||| [d0])[a0]; ([b0] [a0]; ([b0] |||||| [a1, b1]); ([c0] [a1, b1]); ([c0] |||||| [c1] [c1] |||||| [d0])[d0])

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

We can formalise the expression of We can formalise the expression of 
those traces a bit better those traces a bit better ……

AndAnd, still using our intuitive understanding,, still using our intuitive understanding,
guess the next cycle of events guess the next cycle of events ……

[a0]; ([b0] ||| [a1, b1]); ([c0] ||| [c1] ||| [d0])
[a0]; ([b0] ||| [a1, b1]); ([c0] ||| [c1] ||| [d1])
[a0]; ([b0] [a0]; ([b0] |||||| [a1, b1]); ([c0] [a1, b1]); ([c0] |||||| [c1] [c1] |||||| [d0])[d0])
[a0]; ([b0] [a0]; ([b0] |||||| [a1, b1]); ([c0] [a1, b1]); ([c0] |||||| [c1] [c1] |||||| [d1])[d1])

;;;



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 65

[a0]; ([b0] ||| [a1, b1]); ([c0] ||| [c1] ||| [d0])[a0]; ([b0] [a0]; ([b0] |||||| [a1, b1]); ([c0] [a1, b1]); ([c0] |||||| [c1] [c1] |||||| [d0])[d0])

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

We can formalise the expression of We can formalise the expression of 
those traces a bit better those traces a bit better ……

AndAnd, still using our intuitive understanding,, still using our intuitive understanding,
guess the next cycle of events guess the next cycle of events ……

[a0]; ([b0] ||| [a1, b1]); ([c0] ||| [c1] ||| [d0])
[a0]; ([b0] ||| [a1, b1]); ([c0] ||| [c1] ||| [d1])
[a0]; ([b0] [a0]; ([b0] |||||| [a1, b1]); ([c0] [a1, b1]); ([c0] |||||| [c1] [c1] |||||| [d0])[d0])
[a0]; ([b0] [a0]; ([b0] |||||| [a1, b1]); ([c0] [a1, b1]); ([c0] |||||| [c1] [c1] |||||| [d1])[d1])

;;;

AndAnd the rest the rest ……

((( )))***



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 66

[a0]; ([b0] ||| [a1, b1]); ([c0] ||| [c1] ||| [d0])[a0]; ([b0] [a0]; ([b0] |||||| [a1, b1]); ([c0] [a1, b1]); ([c0] |||||| [c1] [c1] |||||| [d0])[d0])

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

From such trace expressions, we can From such trace expressions, we can 
directly write down a directly write down a CSPCSP process that process that 
offers all of them to its environment offers all of them to its environment ……

[a0]; ([b0] ||| [a1, b1]); ([c0] ||| [c1] ||| [d0])
[a0]; ([b0] ||| [a1, b1]); ([c0] ||| [c1] ||| [d1])
[a0]; ([b0] [a0]; ([b0] |||||| [a1, b1]); ([c0] [a1, b1]); ([c0] |||||| [c1] [c1] |||||| [d0])[d0])
[a0]; ([b0] [a0]; ([b0] |||||| [a1, b1]); ([c0] [a1, b1]); ([c0] |||||| [c1] [c1] |||||| [d1])[d1])

;;;((( )))***

DeviceSpecDeviceSpec ==
a0a0 --> (> (b0b0 --> > SKIPSKIP |||||| a1a1 --> > b1b1 --> > SKIPSKIP););
((c0c0 --> > SKIPSKIP |||||| c1c1 --> > SKIPSKIP |||||| d0d0 --> > SKIPSKIP););
a0a0 --> (> (b0b0 --> > SKIPSKIP |||||| a1a1 --> > b1b1 --> > SKIPSKIP););
((c0c0 --> > SKIPSKIP |||||| c1c1 --> > SKIPSKIP |||||| d1d1 --> > SKIPSKIP); ); DeviceSpecDeviceSpec

This generation can This generation can 
be automated.be automated.



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 67

In fact, the reverse is also true In fact, the reverse is also true –– they have exactly the same they have exactly the same tracestraces
and and failuresfailures..

FDR2FDR2 reportsreports DeviceDevice failure refinesfailure refines CheckDeviceCheckDevice.. ☺ ☺ ☺

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

DeviceSpecDeviceSpec ==
a0a0 --> (> (b0b0 --> > SKIPSKIP |||||| a1a1 --> > b1b1 --> > SKIPSKIP););
((c0c0 --> > SKIPSKIP |||||| c1c1 --> > SKIPSKIP |||||| d0d0 --> > SKIPSKIP););
a0a0 --> (> (b0b0 --> > SKIPSKIP |||||| a1a1 --> > b1b1 --> > SKIPSKIP););
((c0c0 --> > SKIPSKIP |||||| c1c1 --> > SKIPSKIP |||||| d1d1 --> > SKIPSKIP); ); DeviceSpecDeviceSpec

DeviceSpecDeviceSpec is an explicit specification of all signal patterns we is an explicit specification of all signal patterns we 
expect (or need) expect (or need) DeviceDevice to be able to perform.to be able to perform.



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 68

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

DeviceSpecDeviceSpec ==
a0a0 --> (> (b0b0 --> > SKIPSKIP |||||| a1a1 --> > b1b1 --> > SKIPSKIP););
((c0c0 --> > SKIPSKIP |||||| c1c1 --> > SKIPSKIP |||||| d0d0 --> > SKIPSKIP););
a0a0 --> (> (b0b0 --> > SKIPSKIP |||||| a1a1 --> > b1b1 --> > SKIPSKIP););
((c0c0 --> > SKIPSKIP |||||| c1c1 --> > SKIPSKIP |||||| d1d1 --> > SKIPSKIP); ); DeviceSpecDeviceSpec

DeviceDevice was not was not implementedimplemented as as DeviceSpecDeviceSpec because of the three because of the three 
independent functions (independent functions (weapons systemsweapons systems, , vision processingvision processing and and 
motion stabilitymotion stability) it had to perform.  ) it had to perform.  ProcessProcess--oriented designoriented design led to its led to its 
three communicating subthree communicating sub--systems.systems.



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 69

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

DeviceSpecDeviceSpec ==
a0a0 --> (> (b0b0 --> > SKIPSKIP |||||| a1a1 --> > b1b1 --> > SKIPSKIP););
((c0c0 --> > SKIPSKIP |||||| c1c1 --> > SKIPSKIP |||||| d0d0 --> > SKIPSKIP););
a0a0 --> (> (b0b0 --> > SKIPSKIP |||||| a1a1 --> > b1b1 --> > SKIPSKIP););
((c0c0 --> > SKIPSKIP |||||| c1c1 --> > SKIPSKIP |||||| d1d1 --> > SKIPSKIP); ); DeviceSpecDeviceSpec

Whilst our intuition indicated that the first two lines of Whilst our intuition indicated that the first two lines of DeviceSpecDeviceSpec
reflected the initial behaviour of reflected the initial behaviour of DeviceDevice, it was unclear whether the , it was unclear whether the 
pattern repeated cleanly as its subpattern repeated cleanly as its sub--components started looping.components started looping.



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 70

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

DeviceSpecDeviceSpec ==
a0a0 --> (> (b0b0 --> > SKIPSKIP |||||| a1a1 --> > b1b1 --> > SKIPSKIP););
((c0c0 --> > SKIPSKIP |||||| c1c1 --> > SKIPSKIP |||||| d0d0 --> > SKIPSKIP););
a0a0 --> (> (b0b0 --> > SKIPSKIP |||||| a1a1 --> > b1b1 --> > SKIPSKIP););
((c0c0 --> > SKIPSKIP |||||| c1c1 --> > SKIPSKIP |||||| d1d1 --> > SKIPSKIP); ); DeviceSpecDeviceSpec

One way to ensure this is to add another barrier (One way to ensure this is to add another barrier (barbar) at the end of ) at the end of 
each loop of each loop of P0P0 and and P1P1 and halfand half--loop of loop of P2P2. The . The failures equivalencefailures equivalence
of of DeviceDevice and and DeviceSpecDeviceSpec shows that the pattern does indeed shows that the pattern does indeed 
repeat cleanly and, so, this overhead is not necessary.repeat cleanly and, so, this overhead is not necessary.



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 71

Behaviour: CSP-M (verifyable)Behaviour: Behaviour: CSPCSP--MM (verifyable)(verifyable)FormalFormal LivenessLiveness

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

DeviceSpecDeviceSpec ==
a0a0 --> (> (b0b0 --> > SKIPSKIP |||||| a1a1 --> > b1b1 --> > SKIPSKIP););
((c0c0 --> > SKIPSKIP |||||| c1c1 --> > SKIPSKIP |||||| d0d0 --> > SKIPSKIP););
a0a0 --> (> (b0b0 --> > SKIPSKIP |||||| a1a1 --> > b1b1 --> > SKIPSKIP););
((c0c0 --> > SKIPSKIP |||||| c1c1 --> > SKIPSKIP |||||| d1d1 --> > SKIPSKIP); ); DeviceSpecDeviceSpec

Rather than being deduced after implementation, Rather than being deduced after implementation, DeviceSpecDeviceSpec may may 
be part of the specification for the behaviour of be part of the specification for the behaviour of DeviceDevice.  We certainly .  We certainly 
need assurance of the behaviour of need assurance of the behaviour of DeviceDevice to use it securely with to use it securely with 
other components. All its patterns of synchronisation (for other components. All its patterns of synchronisation (for safetysafety and and 
livenessliveness questions) can be trivially deduced from questions) can be trivially deduced from DeviceSpecDeviceSpec..



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 72

Class experience Class experience Class experience 

ReflectionReflectionReflection

The case study presented was developed from one first worked The case study presented was developed from one first worked 
through in a single lesson of a graduate class in concurrency atthrough in a single lesson of a graduate class in concurrency at
UNLVUNLV in the spring of 2010.in the spring of 2010.

They had previously studied a range of concurrency approaches, They had previously studied a range of concurrency approaches, 
including including processprocess--orientedoriented material from the material from the KentKent ““Concurrency Concurrency 
Design and PracticeDesign and Practice”” course (presented at last yearcourse (presented at last year’’s workshop).s workshop).

They were comfortable with using They were comfortable with using occamoccam--ππ in nonin non--trivial projects trivial projects 
(thousands of interacting processes), so the example system (thousands of interacting processes), so the example system 
here would be considered fairly simple.here would be considered fairly simple.

Nevertheless, it was appreciated that relying just on intuitive Nevertheless, it was appreciated that relying just on intuitive 
understanding is unsafe understanding is unsafe –– especially if the application were especially if the application were 
safety critical.safety critical.



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 73

Class experience Class experience Class experience 

ReflectionReflectionReflection

During the exercise, students were given an overview (through During the exercise, students were given an overview (through 
examples) of examples) of CSPCSP--MM syntax, with semantics defined by relating syntax, with semantics defined by relating 
back to back to occamoccam--ππ syntax and semantics.syntax and semantics.

The functional nature of The functional nature of CSPCSP--MM, compared with the imperative , compared with the imperative 
nature of nature of occamoccam--ππ, was no particular problem., was no particular problem.

Working with Working with FDR2FDR2 through its through its GUIGUI was not very sexy (by was not very sexy (by 
modern modern GUIGUI standards) standards) –– but easy enough.but easy enough.

Checking their own (initial) test sequences for Checking their own (initial) test sequences for DeviceDevice signals signals 
was very simple. Correct confirms/rejects were obtained.was very simple. Correct confirms/rejects were obtained.

Writing safetyWriting safety--checking processes (like checking processes (like DeviceDevice) for long term ) for long term 
dangers was harder dangers was harder –– but they warmed to this with practice.but they warmed to this with practice.



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 74

Class experience Class experience Class experience 

ReflectionReflectionReflection

WhatWhat--ifsifs on the behaviour of the system could be explored and on the behaviour of the system could be explored and 
answered without running any code answered without running any code …… e.g.e.g.

If the (internal) ping communications were 
removed, does Check still hold?
If the (internal) If the (internal) pingping communications were communications were 
removed, does removed, does CheckCheck still hold?still hold?

Do the a0 and a1 signals strictly alternate?Do the Do the a0a0 and and a1a1 signals strictly alternate?signals strictly alternate?

Do the b0 and b1 signals strictly alternate?Do the Do the b0b0 and and b1b1 signals strictly alternate?signals strictly alternate?

If we added an extra bar sync at the end of 
each cycle in P0 and P1 and half-cycle in P2, 
would it make any difference?

If we added an extra If we added an extra barbar sync at the end of sync at the end of 
each cycle in each cycle in P0P0 and and P1P1 and halfand half--cycle in cycle in P2P2, , 
would it make any difference?would it make any difference?

If the elevator cabin is not at a floor, might the 
floor doors to the elevator shaft still open?
If the elevator cabin is not at a floor, might the If the elevator cabin is not at a floor, might the 
floor doors to the elevator shaft still open?floor doors to the elevator shaft still open?

NoNo

YesYes

NoNo

NoNo

Another exercise Another exercise ……



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 75

occam-π / CSP-Moccamoccam--ππ / / CSPCSP--MM

ReflectionReflectionReflection

occamoccam--ππ teams well with teams well with CSPCSP--MM to provide efficient executables to provide efficient executables 
and rich formal analysis.and rich formal analysis.

Of course, it would be better if only one syntactic representatiOf course, it would be better if only one syntactic representation on 
were needed. We are working on extending were needed. We are working on extending occamoccam--ππ to include to include 
verification assertionsverification assertions (about (about deadlockdeadlock, , livelocklivelock, , determinismdeterminism and and 
refinementrefinement). Its compiler will generate suitably abstracted ). Its compiler will generate suitably abstracted CSPCSP--M M 
and interact with the and interact with the FDR2FDR2 model checker, feeding back results model checker, feeding back results 
in terms of the source in terms of the source occamoccam--ππ program.program.

Together with the ancient formal Together with the ancient formal Laws of occam Programming  Laws of occam Programming  , , 
this moves this moves occamoccam--ππ towards a process algebra in its own right. towards a process algebra in its own right. 

**

http://portal.acm.org/citation.cfm?id=53255http://portal.acm.org/citation.cfm?id=53255http://portal.acm.org/citation.cfm?id=53255**

[A.W.Roscoe and C.A.R.Hoare, 1988][A.W.Roscoe and C.A.R.Hoare, 1988]



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 76

Aside:Aside: model checking found an error overlooked in developing model checking found an error overlooked in developing 
the case study on paper (the need for the case study on paper (the need for pingping) ) …… which shows the which shows the 
necessity for formal checks necessity for formal checks (especially when those responsible (especially when those responsible 
think they wonthink they won’’t make mistakes!)t make mistakes!)..

ObservationObservationObservation

ReflectionReflectionReflection

Formal verification of the behaviour of concurrent processes hasFormal verification of the behaviour of concurrent processes has
been achieved been achieved –– by studentsby students –– even though they engaged in only even though they engaged in only 
simple reasoning themselves.simple reasoning themselves.
The complexity of synchronisation and communication analysed The complexity of synchronisation and communication analysed 
went far beyond the went far beyond the embarrassingly parallelembarrassingly parallel..

Further reading: Further reading: Santa Claus: Formal Analysis of a Process Santa Claus: Formal Analysis of a Process 
Oriented Solution  Oriented Solution  . . **

http:/doi.acm.org/10.1145/1734206.1734211http:/doi.acm.org/10.1145/1734206.1734211http:/doi.acm.org/10.1145/1734206.1734211**
TOPLAS, [April, 2010]TOPLAS, [April, 2010]



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 77

Final ObservationFinal ObservationFinal Observation

Can we teach students Can we teach students (those who love to program, anyway)(those who love to program, anyway)
concurrency so that:concurrency so that:

they quickly develop a correct and intuitive understanding of the primitive 
mechanisms (e.g. processes, communication, synchronisation, networks)
and higher level patterns (e.g. client-server, phased barrier, I/O-PAR) … ?

they quickly develop a correct and intuitive understanding of ththey quickly develop a correct and intuitive understanding of the primitive e primitive 
mechanisms mechanisms (e.g. processes, communication, synchronisation, networks)(e.g. processes, communication, synchronisation, networks)
and higher level patterns and higher level patterns (e.g. client(e.g. client--server, phased barrier, I/Oserver, phased barrier, I/O--PAR) PAR) …… ??

they can use those primitives and patterns with the same fluency as they use 
serial computing primitives, without tripping over dark hazards … ?
they can use those primitives and patterns with the same fluencythey can use those primitives and patterns with the same fluency as they use as they use 
serial computing primitives, without tripping over dark hazards serial computing primitives, without tripping over dark hazards …… ??

they can use formal methods to verify good behaviour (e.g. freedom from 
deadlock and livelock, safety, liveness), without training in the underlying 
mathematics (process algebra, denotational semantics) … ?

they can use formal methods to verify good behaviour they can use formal methods to verify good behaviour (e.g. freedom from (e.g. freedom from 
deadlock and livelock, safety, liveness)deadlock and livelock, safety, liveness), without training in the underlying , without training in the underlying 
mathematics mathematics (process algebra, denotational semantics)(process algebra, denotational semantics) …… ??

they can do this as normal everyday practice, without any sense of fear … ?they can do this as normal everyday practice, without any sense they can do this as normal everyday practice, without any sense of fear of fear …… ??

they can develop their own patterns when the standard ones don’t apply … ?they can develop their own patterns when the standard ones donthey can develop their own patterns when the standard ones don’’t apply t apply …… ??



12-Oct-10 Copyleft (GPL) P.H.Welch and J.B.Pedersen 78

Final ObservationFinal ObservationFinal Observation

Can we teach students Can we teach students (those who love to program, anyway)(those who love to program, anyway)
concurrency so that:concurrency so that:

Any questions?Any questions?Any questions?

they quickly develop a correct and intuitive understanding of the primitive 
mechanisms (e.g. processes, communication, synchronisation, networks)
and higher level patterns (e.g. client-server, phased barrier, I/O-PAR) … ?

they quickly develop a correct and intuitive understanding of ththey quickly develop a correct and intuitive understanding of the primitive e primitive 
mechanisms mechanisms (e.g. processes, communication, synchronisation, networks)(e.g. processes, communication, synchronisation, networks)
and higher level patterns and higher level patterns (e.g. client(e.g. client--server, phased barrier, I/Oserver, phased barrier, I/O--PAR) PAR) …… ??

they can use those primitives and patterns with the same fluency as they use 
serial computing primitives, without tripping over dark hazards … ?
they can use those primitives and patterns with the same fluencythey can use those primitives and patterns with the same fluency as they use as they use 
serial computing primitives, without tripping over dark hazards serial computing primitives, without tripping over dark hazards …… ??

they can use formal methods to verify good behaviour (e.g. freedom from 
deadlock and livelock, safety, liveness), without training in the underlying 
mathematics (process algebra, denotational semantics) … ?

they can use formal methods to verify good behaviour they can use formal methods to verify good behaviour (e.g. freedom from (e.g. freedom from 
deadlock and livelock, safety, liveness)deadlock and livelock, safety, liveness), without training in the underlying , without training in the underlying 
mathematics mathematics (process algebra, denotational semantics)(process algebra, denotational semantics) …… ??

they can do this as normal everyday practice, without any sense of fear … ?they can do this as normal everyday practice, without any sense they can do this as normal everyday practice, without any sense of fear of fear …… ??

they can develop their own patterns when the standard ones don’t apply … ?they can develop their own patterns when the standard ones donthey can develop their own patterns when the standard ones don’’t apply t apply …… ??

Yes
, w

e c
an

!

Yes
, w

e c
an

!

Yes
, w

e c
an

!


