A Tool-based Approach to
Teaching Parallel and
Concurrent Programming

Caitlin Sadowski

Joint work with:

* Tom Ball, Sebastian Burckhardt, Madan Musuvathi, Judith
Bishop, and Shaz Qadeer (Microsoft Research)

* Stephen Toub (Microsoft)
* Ganesh Gopalakrishnan and Joeseph Mayo (University of Utah)

Me: Ph.D. Candidate at UC
Santa Cruz

» Parallel and concurrent programming
Error detection tools
Mental models for debugging
PL-meets-HCl/education

* On the side
- Real-time multiprocessor scheduling

- Getting girls interested in CS through game
programming

Talk Outline

Seven principles of a parallel and
concurrent programming curriculum

Practical Parallel and Concurrent
Programming (PPCP) course

PPCP and the seven principles

Seven Principles

Don’t discount the most popular model
Start with abstractions

Later, teach how to navigate
abstractions

No more matrix multiply

Tool support is important
Emphasize correctness

Expose students to new research

1) Don’t discount the most
popular model

*Threads and shared memory all
over

Want students to use
parallelism

*Need to be prepared for this
model

* Message passing also important

2) Start with Abstractions

* Parallel speedups for data
parallel computations

Motivating
Independent loops

*DAG model

3) Later, teach how to
navigate abstractions

*Need to look below abstractions
to understand performance!

*e.g. caching behaviour

»Still need high-level view
»e.g. critical path

4) No more matrix multiply

*Appealing examples
*Visual & Relevant
Games
Graphics processing
Web-based analysis

5) Tool support is important

* Testing may not expose new
concurrency errors

*Valuable skills for future
*Learn through experimentation

6) Emphasize correctness

Multicore programming is hard
New bugs
Unpredictable bugs
Severe bugs

What if one programmer does
not understand the locking
discipline?

/) Expose students to new
research

*Cover the bases
*What is “best” model?

*Different problems, different
paradigms

* Motivating for students!

Practical Parallel
and Concurrent
Programming

(PPCP)

The PPCP Course is ...

What: 16 weeks (8 units) of material

Slides

Lecture notes

Quizzes, Labs, etc.

Sample programs and applications

Tests and tools

For Whom: beginning graduates, senior
undergraduates, a la carte

Where: http://ppcp.codeplex.com

Dependencies:
Visual Studio 2010 (includes .NET 4.0, C#, F#, TPL.

http://ppcp.codeplex.com/
http://ppcp.codeplex.com/
http://ppcp.codeplex.com/
http://ppcp.codeplex.com/

PPCP Currently

Winter:
Universi ofwu

Computer Scnence Engineering

Now:

THE

UNIVERSITY

OF UTAH

Please tell us about your experiences teaching with the Practical
Parallel and Concurrent Programming (PPCP) course materials by
completing the following survey. We value your insights and ideas
in our efforts to produce quality teaching and learning materials.
Thank you.

University:
Name:

What brought you to this website?

What level was the course you taught offered?

Select all that apply [F] Lower-level undergraduate
[7] Upper-level undergraduate
[7] Undergraduate seminar
[F] Graduate Seminar
[7] Other

Did you teach an entire course using the material, or pick and choose units (a
la carte)?

Select one of the following @ Entire course

© A la carte

http://eng.utah.edu/~cs5955

http://eng.utah.edu/~cs5955
http://eng.utah.edu/~cs5955

Mind your P’s and C’s

“’{C - oncurrency

erformance Speedup Responsiveness

Atomicity, Determinism,
Deadlock, Livelock,
Linearizability, Data races, ...

PPCP Units 1 - 4

Unit 1: Imperative Data Parallel Programming
Data-intensive parallel programming (Parallel.For)
Concurrent Programming with Tasks

Unit 2: Shared Memory
Data Races and Locks
Parallel Patterns
Cache Performance Issues

Unit 3: Concurrent Components
Thread-Safety Concepts (Atomicity, Linearizability)
Modularity (Specification vs. Implementation)

Unit 4: Functional Data Parallel Programming
Parallel Queries with PLINQ

Functional Parallel Programming with F#
GPU Programming with Accelerator

PPCP Units 5-8

» Unit 5: Scheduling and Synchronization
From {tasks, DAGs} to {threads, processors}
Work-stealing

* Unit 6: Interactive/Reactive Systems
Asynchronicity
Event-based programming

* Unit 7: Message Passing
Conventional MPI-style programming
* Unit 8: Advanced Topics

Memory models, lock-free data structures,
optimistic concurrency, Revisions

8 Units: A lot of flexibility

Unit 1:
Imperative Data
Parallelism
\ 4
Unit 4: . .
: Unit 2: Unit 7:
Functional Data .
Parallelism Shared Memory Message Passing
Unit 5: Unit 3:

Scheduling and Concurrent

Synchronization Components
Unit 6: Unit 8:

Reactive Systems Advanced Topics

1) Don’t discount the most

popular model
e Breadth, but embedded in .NET

.NET Program PLINQ Execution Engine
Declarative Imperative Query Analysis
Parallel Parallel | 2 i
Queries Algorithms Data Partitioning .NET Standard Data
l Query Operators Merging
2

— C# Compiler

p— VB Compiler

3

— C++ Compiler Task Parallel Library Data Structures for
0 Coordination
— F# Compiler N , _
Hadries . Parallel Constructs Concurrent Collections
Other .NET r - — : Synchrenization Types
| Compiler . Tasks and Tasks SChedullng Coordination Types
>
Algorithms >
—— Threads]

e

Procl | | . ' Proc p

2) Abstraction-first....

» Start at high abstraction level (Unit 1)
Example: Parallel.For loops

* Introduce patterns, not primitives
(Unit 2)

Example: Producer-Consumer
pattern

.... then
open them up

Unit 2: Discuss data locality,
cache coherence, false sharing,
lock overheads, etc.

Unit 5: the actual primitives

Example: threads, building a
thread-safe buffer

4) No more matrix multiply:

Parallel extensions samples
.s~_ R o

5) Tool-based approach to
correctness & performance

Building understanding of correctness
conditions through experimentation

Stateless Model Checking (with CHESS)
Concurrency Error Detection

Emphasize unit testing, and performance
testing

Alpaca tool
Taskometer

Alpaca (A lovely parallelism
and concurrency a analyzer)

Session Backend Options

Test Explorer Tree Test Result Messages

Entity xml, Task arguments, Test Case xml

—Standard Out

Standard Output

Chess Test Results

Standard Error

Taskometer

Repetitions to execute the test method

a5 TaskoM.

| SortArray

Repetitions w/o timings (done first)

Zoom Bar

Measure |1 x Warmup |0
| Count | Dution| Stat |Ed | = _F— 2 3 T
lI ey : g —
Verify 24484 .

One row per task meter

Interval between a Start and Stop
relative to other meters

Attribute-based testing

[UnitTestMethod]

- simply run this method normally, and report failed
assertions or uncaught exceptions.

[DataRaceTestMethod]

- Run a few schedules (using CHESS tool) and detect data
races.

[ScheduleTestMethod]

- Run all possible schedules of this method (with at most
two preemptions) using the CHESS tool.

[PerformanceTestMethod]

- Like UnitTestMethod, but collect & graphically display
execution timeline (showing intervals of interest)

6) Emphasize correctness

*Tool support

Checking for concurrency
bugs

Correctness
Concept

/) Expose students to new

research

CHESS

stateless model checking
Code Contracts

lightweight specifications
Accelerator

GPU data parallelism
Reactive Extensions (Rx)

Asynchronous & event-based
Revisions

Questions?

* http://ppcp.codeplex.com/

v
@
o
+—
o
4]
—
Q.
e
v
o=
—
@
+—
+—
©
Q.

http://ppcp.codeplex.com
http://ppcp.codeplex.com

