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Proposition 

•  It is urgent and necessary to include more 
parallelism in undergraduate CS curricula, in 
many courses at various levels 
▫  Multicore 
▫  Data Intensive Scalable Computing 
▫  Cloud computing 
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How to meet the challenge 

• Decide on a body of knowledge to include 
▫  With educational objectives 

• Consider teaching and learning strategies 
▫  Offer suggestions on how and where to include 

concepts 

• Help each other through online community 

• Consider institutional challenges to bringing 
about change 



Early and Often, In Community 

A Body of Knowledge in Parallelism 
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A Body of Knowledge in Parallelism: 
Conceptual Issues and Theoretical Foundations 
•  Computer science graduates will be able to: 
▫  Identify and discuss issues of scalability in parallel 

computational settings. 

▫  Define and recognize common types of parallelism and 
communication, namely data parallelism, task 
parallelism, pipelining, message passing, and 
shared memory communication. 

▫  Define race condition and deadlock; identify race 
conditions in code examples; identify deadlock in 
computational and non-computational scenarios. 

▫  Assess the potential impact of parallelism on 
performance using Amdahl’s and Gustafson’s Laws. 
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A Body of Knowledge in Parallelism: 
Software Design 

• Given a problem to solve, CS graduates should 
be able to: 
▫  Decompose it into sequential and parallel 

portions, 

▫  Recognize possible parallel approaches that can be 
used to solve it, and 

▫  Devise and implement an efficient and scalable 
strategy using a chosen approach. 
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A Body of Knowledge in Parallelism: 
Data Structures and Algorithms 
•  Given a problem to solve and a chosen parallel approach 

to solving it, CS graduates should be able to: 
▫  Choose an appropriate reliable data structure, 

▫  Find appropriate existing parallel algorithms that solve the 
problem, and 

▫  Devise and implement an efficient and scalable strategy 
using the algorithm and data structure with that approach. 

▫  Measure the performance changes of algorithms using 
various numbers of cores. 

▫  Compute the speedup and efficiency of parallel algorithms 
using various numbers of cores. 
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A Body of Knowledge in Parallelism: 
Software Environments 

• Given a problem to solve and a chosen parallel 
approach to solving it, CS graduates should be 
able to: 
▫  Choose an appropriate software library or 

programming language abstraction for the 
approach, and 

▫  Devise and implement the solution using that 
approach.  
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A Body of Knowledge in Parallelism: 
Hardware 

• Given a problem to solve and a chosen parallel 
approach to solving it, CS graduates should be 
able to: 
▫  Choose appropriate hardware for the approach, 

and 

▫  Devise and implement the solution using that 
approach on that hardware. 
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Teaching and Learning Strategies 

• Early and often 
▫  Adapt existing curricula 

•  Spiral approach 

▫  Students see concepts more than once, with more 
detail, depth added in later courses 
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Teaching and Learning Strategies: 
Adapt existing curricula 
•  Introductory Level 
• Data Structures 
• Algorithms 
•  Programming Languages 
• OS, Computer Architecture 
• Advanced Electives 

Our report provides many examples of how parts of our stated 
objectives could be brought into various types of courses in these 
areas, using various languages  
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Implementation at Rose-Hulman 

• New CS Program Outcome: 
▫  Identify scalable solutions to problems and 

analyze the scalability of existing solutions under a 
variety of constraints. 
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Implementation at Rose-Hulman 

• Revised SE Program Outcome: 
▫  Apply software engineering theory, principles, 

tools and processes, as well as the theory and 
principles of computer science and mathematics, 
to the development and maintenance of complex, 
scalable software systems. 
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Parallelism in Courses at Rose-Hulman 
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Implementation at St. Olaf, Macalester: 
csinparallel.org 

•  Preparing modules 
▫  1 week or less 
▫  Learning objectives, reading, in-class activities, homework, 

assessment questions 
▫  Including help and information about platform and 

software needed 
•  Using in several courses throughout our degree 

programs 
▫  Introductory 
▫  Data Structures 
▫  Algorithms 
▫  Programming Languages 
▫  Hardware Design 
▫  Advanced OS, parallel courses 
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Community of Educators 

• Change can happen faster if we share ideas and 
materials 

• Need welcoming, supportive environment 
▫  Contribute as little or as much as possible 
  Receive ‘credit’ for contributing 
▫  Obtain materials to adapt 
  Must be easy to find 
▫  Discuss and share information 
  What did and did not work 
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Community of Educators: 
Existing Sites 

•  Intel Academic Community 
▫  Leading the way in attempt to get academics to share 

content 
▫  Marketing flair to site 

•  http://wiki.opensparc.net/bin/view.pl/
CourseMaterial/ConcurrentComputing  

•  Repositories for all CS material: 
▫  Ensembl 

  Not much material yet, but a community formed 
▫  CITADEL 
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Community of Educators: 
Existing Sites 

•  csinparallel.org 
▫  Result of NSF CCLI grant 

(Brown, Shoop) 
▫  Modules 
▫  Parallel platform packages 

  Software 
  Documentation 
▫  Organized using controlled 

vocabulary 
▫  Others can share, comment 
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Community of Educators: 
Practical Difficulties 

•  Sharing between sites would help 
▫  How to do this effectively?  

• Episodic nature of course development  
•  Lack of incentive  
▫  Taking part needs to be valued as service to 

profession 
•  Small community size  
•  Shared content may not be easily adapted by 

others  
•  Technology changes quickly  
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Summary of Suggestions 

•  Incremental change 
▫  Materials with learning goals 
▫  Can assess their effectiveness 

• Early and Often 
•  Spiral 
• Experiential 

•  Proceed in and from Community of Educators 
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Institutional Challenges 

• Curricula already full 
▫  Small incremental change approach 

• Resistance 
▫  This has been tried before… 
▫  How can we persuade of the importance? 

•  Faculty have to get up to speed 
▫  Must try to make this easier 

• ABET: we didn’t consider very much 
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