
Early and Often, In
Community:

Bringing more parallelism into
undergraduate CS curricula

Libby Shoop, Macalester College
Curt Clifton, Rose-Hulman Institute of Technology

Early and Often, In Community

A Collaboration with
Dick Brown
Joel Adams
Mark Gardner
Michael Haupt

Peter Hinsbeeck

St. Olaf College
Calvin College
Virginia Tech University
Hasso-Plattner-Institut,

University of Potsdam
Intel Corporation

A report from ITiCSE 2010 Working Group

Early and Often, In Community

Proposition

•  It is urgent and necessary to include more
parallelism in undergraduate CS curricula, in
many courses at various levels
▫  Multicore
▫  Data Intensive Scalable Computing
▫  Cloud computing

Early and Often, In Community

How to meet the challenge

• Decide on a body of knowledge to include
▫  With educational objectives

• Consider teaching and learning strategies
▫  Offer suggestions on how and where to include

concepts

• Help each other through online community

• Consider institutional challenges to bringing
about change

Early and Often, In Community

A Body of Knowledge in Parallelism

Motivating
Problems and
Applications

Software Design

Conceptual Issues
and Theoretical

Foundations

Data Structures and
Algorithms

Software Environments

Hardware

Early and Often, In Community

A Body of Knowledge in Parallelism:
Conceptual Issues and Theoretical Foundations
•  Computer science graduates will be able to:
▫  Identify and discuss issues of scalability in parallel

computational settings.

▫  Define and recognize common types of parallelism and
communication, namely data parallelism, task
parallelism, pipelining, message passing, and
shared memory communication.

▫  Define race condition and deadlock; identify race
conditions in code examples; identify deadlock in
computational and non-computational scenarios.

▫  Assess the potential impact of parallelism on
performance using Amdahl’s and Gustafson’s Laws.

Early and Often, In Community

A Body of Knowledge in Parallelism:
Software Design

• Given a problem to solve, CS graduates should
be able to:
▫  Decompose it into sequential and parallel

portions,

▫  Recognize possible parallel approaches that can be
used to solve it, and

▫  Devise and implement an efficient and scalable
strategy using a chosen approach.

Early and Often, In Community

A Body of Knowledge in Parallelism:
Data Structures and Algorithms
•  Given a problem to solve and a chosen parallel approach

to solving it, CS graduates should be able to:
▫  Choose an appropriate reliable data structure,

▫  Find appropriate existing parallel algorithms that solve the
problem, and

▫  Devise and implement an efficient and scalable strategy
using the algorithm and data structure with that approach.

▫  Measure the performance changes of algorithms using
various numbers of cores.

▫  Compute the speedup and efficiency of parallel algorithms
using various numbers of cores.

Early and Often, In Community

A Body of Knowledge in Parallelism:
Software Environments

• Given a problem to solve and a chosen parallel
approach to solving it, CS graduates should be
able to:
▫  Choose an appropriate software library or

programming language abstraction for the
approach, and

▫  Devise and implement the solution using that
approach.

Early and Often, In Community

A Body of Knowledge in Parallelism:
Hardware

• Given a problem to solve and a chosen parallel
approach to solving it, CS graduates should be
able to:
▫  Choose appropriate hardware for the approach,

and

▫  Devise and implement the solution using that
approach on that hardware.

Early and Often, In Community

Teaching and Learning Strategies

• Early and often
▫  Adapt existing curricula

•  Spiral approach

▫  Students see concepts more than once, with more
detail, depth added in later courses

Early and Often, In Community

Teaching and Learning Strategies:
Adapt existing curricula
•  Introductory Level
• Data Structures
• Algorithms
•  Programming Languages
• OS, Computer Architecture
• Advanced Electives

Our report provides many examples of how parts of our stated
objectives could be brought into various types of courses in these
areas, using various languages

Early and Often, In Community

Implementation at Rose-Hulman

• New CS Program Outcome:
▫  Identify scalable solutions to problems and

analyze the scalability of existing solutions under a
variety of constraints.

Early and Often, In Community

Implementation at Rose-Hulman

• Revised SE Program Outcome:
▫  Apply software engineering theory, principles,

tools and processes, as well as the theory and
principles of computer science and mathematics,
to the development and maintenance of complex,
scalable software systems.

Early and Often, In Community

Parallelism in Courses at Rose-Hulman

Early and Often, In Community

Implementation at St. Olaf, Macalester:
csinparallel.org

•  Preparing modules
▫  1 week or less
▫  Learning objectives, reading, in-class activities, homework,

assessment questions
▫  Including help and information about platform and

software needed
•  Using in several courses throughout our degree

programs
▫  Introductory
▫  Data Structures
▫  Algorithms
▫  Programming Languages
▫  Hardware Design
▫  Advanced OS, parallel courses

Early and Often, In Community

Community of Educators

• Change can happen faster if we share ideas and
materials

• Need welcoming, supportive environment
▫  Contribute as little or as much as possible
  Receive ‘credit’ for contributing
▫  Obtain materials to adapt
  Must be easy to find
▫  Discuss and share information
  What did and did not work

Early and Often, In Community

Community of Educators:
Existing Sites

•  Intel Academic Community
▫  Leading the way in attempt to get academics to share

content
▫  Marketing flair to site

•  http://wiki.opensparc.net/bin/view.pl/
CourseMaterial/ConcurrentComputing

•  Repositories for all CS material:
▫  Ensembl

  Not much material yet, but a community formed
▫  CITADEL

Early and Often, In Community

Community of Educators:
Existing Sites

•  csinparallel.org
▫  Result of NSF CCLI grant

(Brown, Shoop)
▫  Modules
▫  Parallel platform packages

  Software
  Documentation
▫  Organized using controlled

vocabulary
▫  Others can share, comment

Early and Often, In Community

Community of Educators:
Practical Difficulties

•  Sharing between sites would help
▫  How to do this effectively?

• Episodic nature of course development
•  Lack of incentive
▫  Taking part needs to be valued as service to

profession
•  Small community size
•  Shared content may not be easily adapted by

others
•  Technology changes quickly

Early and Often, In Community

Summary of Suggestions

•  Incremental change
▫  Materials with learning goals
▫  Can assess their effectiveness

• Early and Often
•  Spiral
• Experiential

•  Proceed in and from Community of Educators

Early and Often, In Community

Institutional Challenges

• Curricula already full
▫  Small incremental change approach

• Resistance
▫  This has been tried before…
▫  How can we persuade of the importance?

•  Faculty have to get up to speed
▫  Must try to make this easier

• ABET: we didn’t consider very much

Early and Often, In Community

Acknowledgments
Online Advisory Panel Discussion Members

•  Clay Breshears, Intel Corporation;

•  Daniel Ernst, University of Wisconsin—Eau Claire;

•  Gregory Gagne, Westminster College;

•  Michael Heroux, Sandia National Labs and St.
John’s University;

•  Jeanne Narum, Project Kaleidoscope; and

•  Matthew Wolf, Georgia Tech and Oak Ridge
National Labs.

