

 DrHabanero: a Platform
for Parallel Software Education

in Java

 Robert “Corky” Cartwright
Vivek Sarkar

 Rice University

Programming Pedagogy at Rice
• Functional Programming (FP) is the best starting point

– simple abstract model of computation directly tied to arithmetic and algebra (see
Felleisen et al, “How to Design Programs [HTDP])

– introduces students to idea of data-directed design using algebraic data

– formal semantics as laws for simplifying program text

– test-driven development using templates (e.g. structural recursion) is natural way
to make the development process methodical

• OOP is a generalization of FP

– incremental definition of new abstractions (classes) in terms of existing classes,
recursion, and self

– Composite design pattern provide a straightforward way to encode algebraic
types (inductively defined free-term algebras)

– Command/Strategy pattern is natural encoding of functions as objects

– Interpreter pattern precisely corresponds the structural recursion template
taught in HTDP

– Our pedagogic IDE (DrJava) supports a functional “subset” of Java focused on
programming with immutable algebraic data

Recent Insights

• Trend toward multicore processors is turning programming
methodology on its head. Parallel programming [PP] (not
concurrent programming) will become dominant modality for
developing applications software.

• Most accessible form of PP is functional decomposition into
"pure" tasks using "futures"; as in MultiLisp; a "pure" task
has a functional specification (maps read-only inputs to an
immutable result)

• FP/immutable OOP is easiest way to write "pure" tasks.

• In multicore contexts, much of the copying overhead in
future-based FP is dictated by communication and sharing
protocols.

Our New Pedagogy
• Functional Programming in Scheme (excerpted from HTDP)

• Immutable OOP in Java (supported by DrJava functional language level)

• Functional subset of Habanero Java [HJ] (supported by DrHabanero)*

• Java enhanced with rich collection of constructs for decomposing
computations into parallel tasks; similar in flavor to Cilk but Java rather than C
is the base.

• Most tractable subset of HJ is purely functional; tasks are effectively functions
from immutable input arguments to immutable results.

• Long term vision: migrate to X10 (which includes analogs for most of our
preprocessor constructs and cleans many ugly issues in Java) as it gains
mindshare in academic and commerical marketplaces.

Functional HJ
• Functional subset of Java (as DrJava functional level) + 2 constructs

– async expr which spawns a future to evaluate expr asynchronously.

– finish stmt which executes stmt and then blocks until all asyncs
spawned (and transitively spawned) in executing stmt

– finish is not essential because the top-level program encloses its body in
an implicit finish

• The return type of async is a future<type> object which supports the
method get() , which blocks until the async completes (the usual demand
operation on a future)

• In Java terms, async creates a Callable and starts it in an asynchronous
thread.

• Possible extensions: array comprehensions, forall to excute iterations over
a set of points in a region in parallel.

Curriculum Reality
• Start teaching functional programming in Java using DrJava language levels.

(Prior exposure to programming but nothing systematic.

• Progress to functional parallel programming followed by mostly functional
parallel programming

– Benign use of imperative code

– Disciplined use of shared mutable state

• Leverage pedagogic IDEs (DrJava and DrHabanero*)

• Migration to X10 (Scala?) may be our long term salvation.

– Good notation for functions as data values (Java following suit?)

– High-level constructs for expressing parallel functional tasks

– variable/value distinction is critical

– Successor to Java?

*In development.

Value of Pedagogic IDEs

• Friendly rather than hostile environment for beginners

– Syntax highlighting

– Automatic indentation

• Enforce a particular methodology and associated invariants,
e.g., functional Java.

• Provides a framework for supporting new abstractions on top
of mainstream language platforms; preprocessing done right.

• Eliminate need for command line execution (and a
knowledge of that crufty interface)

• Integrated testing

Demonstration

• DrJava functional language level

– Insertion sort

– QuickSort

• DrJava/HJ

– QuickSort

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

