
A Tool-based Approach to Teaching
Parallel and Concurrent Programming

Caitlin Sadowski
University of California at Santa Cruz

supertri@cs.ucsc.edu

Thomas Ball
Microsoft Research

tball@microsoft.com

Judith Bishop
Microsoft Research

jbishop@microsoft.com

Sebastian Burckhardt
Microsoft Research

sburckha@microsoft.com

Ganesh Gopalakrishnan
University of Utah

ganesh@cs.utah.edu

Joeseph Mayo
University of Utah

u0565813@utah.edu

Madanlal Musuvathi
Microsoft Research

madanm@microsoft.com

Shaz Qadeer
Microsoft Research

qadeer@microsoft.com

Stephen Toub
Microsoft

stoub@microsoft.com

Abstract
Today, multicore computers are commonplace and university cur-
ricula are lagging behind. We need to work concurrency and paral-
lelism into introductory courses, while also maintaining upper-level
specialized courses on the topic. Since teachers may themselves re-
quire education on the topic, we feel that it is important to make
course materials freely available. This position paper outlines some
key components we feel concurrency curricula should have, and
then discusses how the course materials we are developing satisfies
those components.

1. Introduction
Programming for multicore and distributed systems has moved
from a fringe activity to a standard practice. These systems have an
increasing share in the space of computer hardware, a share which
is only likely to increase [2]. However, this shift in programming
practice is still impacting university curricula.

Concurrency is difficult to reason about, both in terms of cor-
rectness and performance. When writing parallel or concurrent pro-
grams, students are faced with an entire new class of potential code
bugs. Concurrency bugs are both insidious and prevalent [5, 12].

We believe that:

• High-level abstractions can create a unifying framework for
viewing performance with correctness, and can lead to parallel
speedups with relatively little effort

• Tools support can make programming faster, less frustrating,
and can make programs more correct.

Starting with these tenets, we feel the following components are
integral parts to a parallel and concurrent programming curricula.

2. Key Components
Start with abstractions. We agree with several other researchers [7,
8, 16] in advocating starting at a high level of abstraction. In the
beginning, parallel and concurrent programming should be taught
with a breadth-first, productivity emphasis. Curricula should start

by highlighting patterns, not primitives. We should make it easy
for students to do high-level parallelism (for example, parallelizing
independent loops). It is also very important to initially motivate
students with simple examples they can try out that do result in
parallel speedups [11].

Later, teach how to navigate abstractions. Unfortunately, perfor-
mance often depends on factors throughout the entire sequence of
abstraction layers. For example, false sharing can lead to unneces-
sary contention. However, identifying false sharing requires under-
standing caching behaviours.

Although we feel it is important to start the curriculum at a high
level of abstraction, we need to show students how to break those
abstractions when they have to. Students need to learn the building
blocks of concurrent programming (e.g. threads and volatile vari-
ables), and understand what goes on “behind the scenes.”

Emphasize correctness. We believe that university curricula for
concurrency should emphasize correctness, although performance
issues should not be far behind. Concurrency bugs are notoriously
problematic. Other researchers have highlighted the need for stu-
dents to understand concurrency-specific correctness issues [6, 7,
10, 16]. Beginning students need a solid grasp of how to write cor-
rect programs, and what correctness issues are unique to concurrent
programs, before performance-tuning their programs.

No more matrix multiply. A focus on appealing examples [7] is
important for engaging students with the curriculum.

Don’t discount the most popular model. Threads and shared
memory are the dominant paradigm for writing concurrent pro-
grams. Students need to be prepared to write programs using this
paradigm, and to troubleshoot common types of shared memory
bugs. As with other researchers [9], we want students to start lever-
aging parallelism in programs they write. Realistically, many stu-
dents will be writing programs in mainstream languages under this
dominant paradigm.

Tool support is important. For multithreaded programs, normal
unit tests are inadequate for discovering concurrency-specific bugs.



We believe that analysis tools should be used in a classroom setting
to identify these bugs [3, 4, 14]. With appropriate tool support,
students can build a deeper understanding of correctness issues
through experimentation. We believe that this tool-based approach
will improve the learning experience by enabling quick and simple
experimentation and making debugging less frustrating.

Expose students to new research. There is not a clear consen-
sus on the most effective way to program for multicore systems.
Students must be prepared to adapt to changing paradigms [15].
Additionally, students may be engaged by exposure to new re-
search [15].

3. Course
We have been developing a course curricula based on the above
convictions, supported by Microsoft technologies [1]. Practical
Parallel and Concurrent Programming (PPCP) is a semester-long
course that will teach students how to program parallel/concurrent
applications, using the C# and F# languages with other .NET li-
braries. This 16 week (8 unit) course is aimed at beginning grad-
uate or senior undergraduate students. Individual units can also be
taught à la carte, and may be sprinkled throughout a computer sci-
ence curriculum. This course is tilted towards correctness issues,
concurrent programming, and shared memory systems. However, a
wide breadth of material is covered, including performance pitfalls,
message passing, and data parallelism.

PPCP gives students a vocabulary for reasoning about both par-
allelism and correctness. For example, the DAG model of paral-
lelism presented in Unit 1 provides a general abstraction which
can be used to identify both performance bottlenecks and con-
currency bugs in applications. Most importantly, the correctness
concepts from the course are supported by tools. We have devel-
oped an attribute-based concurrency unit testing framework called
Alpaca (A lovely parallelism and concurrency analyzer). Students
can build understanding of correctness conditions and performance
problems through experimentation.

Start with abstractions. The course material starts at a high level
of abstraction by introducing patterns (Units 1-4). These patterns
take advantage of new .NET 4.0 parallel extensions, and include
simple Parallel.For loops, design patterns which avoid data races
(e.g. immutability and pipelines), and high-level map and reduce
primitives in PLINQ and F#. We emphasize straightforward par-
allelization of independent computations, plus data partitioning
strategies that may lead to independent computations.

Later, teach how to navigate abstractions. In later units (Unit
5 & 8), these abstractions are peeled back to expose the underly-
ing primitives (e.g. threads). Students learn how to build their own
thread pool and use low-level synchronization primitives after par-
allelizing independent tasks.

Emphasize correctness. We emphasize correctness throughout
the course, along with performance. In each unit, a selection of cor-
rectness concepts are highlighted. Furthermore, correctness issues
have tool support within Alpaca.

No more matrix multiply. We have included a variety of example
applications with the course materials. Many of these have a visual
component (e.g. small games).

Tool support is important. In addition to supporting standard unit
tests and special performance tests, Alpaca leverages the CHESS
stateless model checking framework [13] to run unit tests under
different schedules and help mitigate scheduler-dependent non-
determinism in testing. Additionally, dynamic analyses for a va-
riety of concurrency bugs are built-in. In this course, students will

regularly analyze their code, including tests of data race detection,
deadlock detection, stateless model checking, and linearizability
checking. The presence of tool support for concurrency bug detec-
tion allows predictable development and testing; for the first time
in an academic setting, students have ways to control concurrent
unit tests.

Expose students to new research. Throughout the course, we
make relatively new research directly available to students. For
example, the Alpaca framework builds off of recent advances in
stateless model checking and concurrency bug analysis. We use
new (.NET 4.0) language features as an integral component of the
course. We also have a course module (Unit 8) targeted towards
more advanced topics and new models for parallel and concurrent
programming.

Acknowledgments
Special thanks to Sherif Mahmoud and Chris Dern for their support.

References
[1] Practical parallel and concurrent programming course materials.

http://ppcp.codeplex.com/.
[2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubi-

atowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel,
and K. Yelick. A view of the parallel computing landscape. Commu-
nications of the ACM, 52(10):56–67, 2009.

[3] M. Ben-Ari. A suite of tools for teaching concurrency. ACM SIGCSE
Bulletin, 36(3):251–251, 2004.

[4] S. Carr, J. Mayo, and C. Shene. ThreadMentor: a pedagogical tool
for multithreaded programming. Journal on Educational Resources in
Computing (JERIC), 3(1):1, 2003.

[5] S. Choi and E. Lewis. A study of common pitfalls in simple multi-
threaded programs. ACM SIGCSE Bulletin, 32(1):329, 2000.

[6] C. Clifton. Concurrency in the curriculum: demands and challenges.
In Workshop on Curricula for Concurrency, 2009.

[7] J. M. David P. Bunde. Teaching concurrency beyond HPC. In
Workshop on Curricula for Concurrency, 2009.

[8] D. Ernst. Parallelism is everywhere - so how do we make it accessible?
In Workshop on Curricula for Concurrency, 2009.

[9] D. Ernst and D. Stevenson. Concurrent CS: preparing students for a
multicore world. In ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE), 2008.

[10] A. Fekete. Teaching students to develop thread-safe java classes. In
ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE), 2008.

[11] D. Joiner, P. Gray, T. Murphy, and C. Peck. Teaching parallel comput-
ing to science faculty: best practices and common pitfalls. In Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP),
2006.

[12] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics.
SIGPLAN Notices, 43(3):329–339, 2008.

[13] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. Nainar, and I. Neamtiu.
Finding and reproducing heisenbugs in concurrent programs. In Sym-
posium on Operating Systems Design and Implementation (OSDI),
2008.

[14] M. Ricken and R. Cartwright. Test-first Java concurrency for the class-
room. In ACM Technical Symposium on Computer Science Education
(SIGCSE), pages 219–223, 2010.

[15] S. Rivoire. A breadth-first course in multicore and manycore program-
ming. In ACM Technical Symposium on Computer Science Education
(SIGCSE), 2010.

[16] M. L. Scott. Making the simple case simple. In Workshop on Curricula
for Concurrency, 2009.


