
An undergraduate curriculum infused with parallelism

Vijay S. Pai and Samuel P. Midkiff, School of ECE, Purdue University
{vpai,smidkiff}@purdue.edu

During the 1980s, with the rise of the mini-supercomputer, it was a given that parallelism would soon
be ubiquitous. When the “killer micro” resulted in the death of most of the mini-supercomputer companies,
the arrival of ubiquitous parallelism became less certain, a consensus that existed only until dual processor
workstations became popular in the late nineties. For economic reason, however, these machines never
became widespread.

Ubiquitous parallelism did finally arrive around the middle of last decade. After repeated predictions
that ubiquitous parallelism would soon be upon us, large parts the software industry and the higher educa-
tion system were unprepared for its actually arrival. The software industry was forced to confront a work
force trained in certain languages, and dependent on increasingly faster processors to support increasingly
complex features – features which drove the adoption of new, and sometimes even better, versions of soft-
ware. Computer Science and Engineering departments were forced to confront a curriculum that stressed
high-level languages, abstraction and clean code, with little attention paid to architecture and low-level
implementation details.

The current focus on parallelism in undergraduate education is driven entirely by architectural changes.
The type of parallelism being discussed – typically thread based parallelism relying on a shared address
space; and the abstractions used to exploit and control that parallelism – Pthreads, language specific thread
models, transaction and locks, are driven entirely by these architectural changes. Moreover, the algorithms
taught in, e.g. a data structure course emphasizing parallelism, primarily target shared memory architectures,
in part because of these architectural changes. We note that despite radical changes in the underlying ar-
chitecture, the economic importance of harnessing those changes for general purpose, commodity software,
makes a focus on abstraction essential for the software industry to continue to develop and maintain complex
systems. The additional complexity caused by having these software systems utilize parallelism for higher
performance will only add to the need for abstraction. Fortunately, parallelism offers rich opportunities to
show the utility and necessity of abstraction.

It is our belief that an understanding parallelism, and concepts related to parallelism (independence,
ordering, atomicity, and so forth) are fundamental to computation. Because of that, it is essential to students
be introduced early to these concepts. However, because these concepts are so fundamental, it is no more
desirable to teach them in a single “parallelism” course than it would be to teach concepts of abstraction
in only a single programming course. Therefore, the teaching of parallelism must begin early, and must
continue throughout the undergraduate curriculum (and the graduate curriculum, for those students that
pursue a post-graduate degree.) A practical and severe challenge is that the because software will only get
more complex, material currently taught about good software practices must continue to be taught.

At Purdue we are tackling these challenges with a comprehensive evaluation and reform. For the rest of
this position paper we will describe our efforts in this area.

Teaching parallelism early. We believe that it is essential to introduce parallelism in the first year
because students initially exposed to conventional sequential models of problem-solving will have difficulty

1



adjusting to concurrency since some of their previous assumptions will have to be “unlearned.” Additionally,
we only have four years to convert high school seniors into functioning computer engineers and scientists
and thus must budget that time carefully.

We employ the bottom up model pioneered by Patt and Patel and described in a widely adopted text-
book [1]. The course starts with the bare basics of bits and Boolean logic, progresses to numerical repre-
sentations, moves on to transistor switches and digital logic, builds up instruction-set processing and the
computer’s data path, discusses I/O, and then introduces structured programming in assembly language
before moving on to high-level programming in C.

Teaching, at a high level the hardware components of computing is valuable components of computing
have high levels of concurrency as various resources operate in parallel. For example, the ALU can be used
to calculate the next program counter value at the same time that the register file is being read to determine
the source registers of the current instruction. Consequently, we increase the emphasis on the computer data
path and how various elements operate at the same time. This naturally extends to a multicore computer by
having multiple computational state machines operating simultaneously. Another exercise we do is to have
the student consider asynchronous I/O devices, and then asynchronous devices with their own processor.
Control of the low-level hardware with a high level language introduces students to the value of abstraction.

Sophomore courses. At the sophomore level we teach Advanced C Programming and Introduction to
Digital System Design. The digital systems course low-level parallelism in adders and synchronous and
asynchronous design. In the programming course, the students become acquainted with different concepts
of parallelism, including sockets, fork system calls, and in advanced sections data-sharing, Amdahl’s Law,
message queues and concurrency control. By linking the low-level hardware and software concepts to higher
levels abstractions (instructions, library calls and data structures) the principles of information hiding and
abstraction are reinforced.

Junior courses. In the junior year Software Engineering Tools (a scripting languages course)Data Struc-
tures and Microprocessor System Design and Interfacing are taken. The software courses do, or will, provide
some exposure to multi-threading in Python and parallel data structures algorithms. The microprocessors
systems course introduces students to hardware and software concurrency in the form of interrupts.

Enhanced senior courses. In the senior year two or more of Introduction to Digital Computer Design
and Prototyping, Software Engineering, Object-Oriented Programming in C++ and Java and Introduction
to Compilers and Optimizing Compilers. The digital computer design course is an introductory architecture
course that requires the students to do a VHDL design of a multicore processor and learn about coherency
and synchronization issues. All of the software courses discuss parallelism – the first two in terms of parallel
and concurrent object oriented programs, and the compilers course in the context of an auto-parallelizing
compiler and concepts of independence and dependence.

As with all curricular issues, constant monitoring and revision is necessary. We are guided in this by
means of a Concurrency Content Inventory test that we give to students at various times during their studies.
Initial feedback indicates that our efforts to make parallelism an fundamental part of the entire undergraduate
curriculum are paying off.

References

[1] Yale Patt and Sanjay Patel. Introduction to Computing Systems: From Bits and Gates to C and Beyond.
McGraw Hill, 2001.

2


