
The Impending Ordinariness of
Teaching Concurrent Programming

Doug Lea

SUNY, Oswego

dl@cs.oswego.edu

Abstract
It is a sure thing that topics in concurrency and parallelism
will further infiltrate common Computer Science and Soft-
ware Engineering Curricula. This paper surveys some likely
targets, including those on programming techniques, pro-
gram design, data structures, semantics, and systems.

Categories and Subject DescriptorsK.3 Computers and
Education [K.3.2 Computer and Information Science Edu-
cation]: Curriculum

General Terms Algorithms, Design, Experimentation, Mea-
surement, Performance, Theory

Keywords Concurrency, Parallelism, Curricula

1. Introduction
For the past forty years, Computer Science (and Software
Engineering) curriculum design has been largely a matter
of compromise in introducing newer ideas while retaining
the essence of older, but still improtant ideas. The OOP-
SLA/Splash community has been (often indirectly) respon-
sible for several curricular shifts over the years. These days,
nearly all students are taught the basics of OO programming,
UML diagrams, at least a few Gang-of-Four design patterns,
and so on. The initial novelty of such topics has long since
worn off. For both better and worse, corresponding curricu-
lar guidelines focus on ensuring competent coverage of ba-
sic principles rather than the excitement associated with in-
troducing incompletely understood or capturing strong dif-
ferences in opinion among those researching them. For one
of many examples, teaching/learning Java vs JavaScript con-
veys almost nothing about the circa 1990 feuds among class-
based vs prototype-based OO language designers.

Copyright is held by the author/owner(s).

SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
ACM 978-1-4503-0240-1/10/10.

The same trends are upon us in the realm of concur-
rent/parallel programming. The general directions of ongo-
ing and upcoming curricular changes are increasingly clear.
Some (including those on developing programming skills)
seem entirely analogous to those surrounding the introduc-
tion of OO programming. Others differ in that concurrency
makes contact with a broader set of programming commu-
nities as well as work in systems, architecture, and theory.
Thus, one might expect more diverse answers to questions
including: should concurrency topics be the sole focus of one
course (or more), or should ideas be infused across others, or
both? The remainder of this paper surveys some of the con-
crete coverage topics. The intent is not to try to define this
coverage, but to expose some likely topics (not courses), to
draw attention to those that may benefit from ideas by re-
searchers and practitioners in concurrency. The topics also
invite contemplation (without providing answers) of the hard
questions of what existing common aspects of the CS cur-
riculum will become reduced or removed.

Operations on Aggregates.Structured (and often “detemi-
nistic”) parallel programming constructs that perform apply,
map, reduce, select, and related operations on the elements
of arrays and collections are arguably no harder to learn and
use than are sequential for-loops. Which is not to say that
either are trivially easy – both admit common error patterns.
However, teaching them at about the same time, very early
in the curriculum, may help avoid creating another genera-
tion of engineers whose first thoughts about parallelism are
that it is scary and always hard.

Divide and Conquer. The idea of “split a problem in two,
and perform both in parallel” is arguably both easier to
learn and more important to understand than the sequential
version that is taught early and often in CS courses.

Algorithm Analysis. A presentation of at least Amdahl’s
Law (for analyze of the extent to which parallel speedups are
limited by sequential bottlenecks) is a natural complement to
the usual introductory Big-O coverage.

Loosely Coupled Components.It is increasingly common
to approach loosely-coupled asynchronous execution as a
natural extension of event-based programming (which itself



has become a common topic only since the introduction
of GUI programming in CS curricula). There have been
some helpful contributions (for example the event-based
Scala Actor framework) that help unify ideas of notifica-
tions and messaging. However, these have yet to be made
boring enough for routine accommodation into courses.

Aliasing and Independence. The small topics of “alias-
ing”, call-by-reference vs value, and so on, in sequential pro-
gramming blossom into a huge set of concerns in concur-
rency: data races, process isolation, memory models, owner-
ship types, etc. We have yet to see an attempt to distill the
main ideas into a set of essentials that all students should
master. At a minimum though, students should appreciate
the tradeoffs that may be leading to a greater prevalence of
functional programming styles in concurrent than sequential
programming.

Coordination. Synchronization abstractions, including locks,
monitors, transactions, blocking channels, barriers, and
many others have long been a primary focus of concurrent
programming, but one that has historically been subject to
bizarre factionalization in which proponents of one particu-
lar construct are unable to even communicate with those ad-
vocating others. We still await approaches to teaching about
coordination algorithms and protocols that provide a concise
basis for understanding them without becoming locked into
any one of these forms.

Scalable Data Structures. The need access and manage
large numbers of data elements inspired the discovery of
data structures such as B-Trees, which are now common top-
ics in intermediate and advanced courses in data structures
and algorithms. Similar, the need to access and manage data
across large numbers of threads has led to the discovery of
data structures and algorithms that minimize synchroniza-
tion, such as non-blocking queues. One can only expect that
these become equally routine topics in such courses.

Numerical Computing. Algorithms in support of scientific
analysis, graphics, and modeling tend to have enough struc-
ture to readily support parallel decomposition, and further,
to readily exploit special-purpose hardware such as GPUs.
However, there does not yet seem to be a consensus about
which of the underlying concepts are central enough for
most or all students to learn, as opposed to the realm of spe-
cialized courses in these and related areas.

Systems. Architectures, operating systems, virtual ma-
chines, compilers, tools, and runtime systems in support of
parallel programming are more complex than those for se-
quential programming. As an unfortunate byproduct, higher-
level programmers are increasingly oblivious to even the
basic theory of operation of the substrates underlying every-
day computing. They are thus unable to cope with perfor-
mance anomalies or unexpected behaviors. Good solutions
probably await good ideas on how to defragment “systems”
courses to arrive at offerings that convey essential ideas.


