
Concurrency, Intuition and Formal Verification: Yes, We Can!

A Position Paper: “Curricula for Concurrency and Parallelism” (SPLASH 2010)

Jan B. Pedersen, School of Computer Science, UNLV, USA (matt@cs.unlv.edu)
Peter H. Welch, School of Computing, University of Kent, UK (phw@kent.ac.uk)

Abstract

Not only can (and should) concurrency be introduced early in the undergraduate CS curriculum – but
mechanisms for its formal analysis and verification can also be presented that are intuitive, effective
and easy to learn and apply. Further, this can be done without requiring students to be trained in the
underlying formal mathematics. Instead, we stand on the shoulders of giants who have engineered the
necessary mathematics into the concurrency models we use (CSP, π-calculus), the programming
languages/libraries (occam-π, JCSP) that let us design and build efficient executable systems within
these models, and the model checker (FDR2) that lets us explore and verify those systems. All we
require from our students are a love of the subject, a flair for programming and some time and effort.
This position paper presents some experience over the past year that lets us make these claims.

Motivation

Multi-core architectures are now standard, with the number of cores per processor growing each year.
Multi-processor networks are inescapable for super-computing problems and many (most?) forms of
embedded computer platform. Programmers (and students) cannot avoid concurrent reasoning when
dealing with these devices – avoidance leads to many bad things. Verification of this concurrent
reasoning is mostly set aside (as it has generally been for sequential reasoning, we admit). A
significant amount of professional development time and money is spent instead on testing software.
However, testing and debugging concurrent programs is even more difficult than sequential programs
– common faults are intermittent and not reproducible on demand. If the concurrency pattern is
beyond the embarrassingly parallel (i.e., the processes need to engage with each other) and we have
made some mistakes in design or coding, testing may never see these faults … and our system will
eventually fail in service. So, we need to verify. Now, just as we need tools (e.g. programming
languages) to produce executable systems, we need tools (e.g. model checkers) to produce verified
systems. Language and model checker pairs need to live to the same concurrency model.

Eaxmple

The diagram shows the internal
structure of Device, a component of
a robot control system driving 8 output
channels. There are 3 sub-components
(P0, P1 and P2) running concurrently.
They exchange information using
internal channels (ask, ans, ping)
and all coordinate their actions on an
internal barrier (bar).

CSP [1, 2] semantics apply. Channel communication is unbuffered: the sender process must wait for
the receiver – and vice-versa. Barrier synchronisation means that any process engaging on the barrier
must wait until all processes (plugged into the barrier) engage – the last one unblocks them all.

We show two representations defining the behaviour of Device: one in occam-π [3] (for compiling
to a runnable system) and one in CSP (for formal analysis). The representations are in 1-1
correspondence and our students have had little trouble shifting between them. A tool, [4], exists to
generate the CSP automatically from occam-π, but this is not yet ready for use in the classroom.

Behaviour questions we wish to check are: might the Device deadlock (stop); might it livelock
(engage in an infinite sequence of internal channel or barrier synchronisations between its sub-
processes, with no further outputs signaled); is it safe (producing no incorrect sequences of signals);
will it stay alive (offering all permitted signal sequences)?

For our example, data values and computations are not relevant. For simplicity, they are omitted in the
following, with all message content abstracted to zero. Here is the executable (occam-π) code:

What patterns of signal are possible from Device? Intuition: first is a0 (only external channels
matter). This comes from P0, which has just been asked a question by P1. P1 can’t signal on a1 until
it has an answer from P0. P2 can’t get past its first barrier, bar. What line signals second? Either b0
or a1. If it was b0, then a1 will definitely be third and b1 fourth. If second was a1, then third is
either b0 or b1 and fourth is whichever was not third. Then, the internal barrier (bar) happens, as all
three processes reach it, and the fifth, sixth and seventh are c0, c1 and d0 in any order. That’s 18
possible orderings of the first 7 signals. But what happens when the sub-processes start looping?
Could P0 signal again on a0 before P2 gave its first d0? Are there any more first-7 signal sequences?

We can formally verify the above intuition, and answer the open questions, with a CSP representation
of the system. We write in CSP-M, the machine readable form used by FDR2 [5]. CSP treats channel
communications and barriers in the same way: they are all events (declared as channels in CSP-M).
For our example system, we can abstract the channel communications further by omitting the data sent
(always zero) and the direction of communication (which is irrelevant to this formal analysis):

Note that CSP-M is a declarative (or functional) language, whereas occam-π is imperative. Students
who love to program have no problem learning new syntax and semantics, so long as they understand
why (occam-π is for building executables; CSP-M is for reasoning about them; they have the same
concurrency semantics).

In the above, the process loops in occam-π become tail recursion in CSP-M. The parallel operator in
CSP-M, [| sync-set |], is binary – hence, the Device network is built in stages, two processes at a

PROC P0 (CHAN INT a0!, b0!, c0!,
 CHAN INT ask?, ans!, BARRIER bar)
 WHILE TRUE
 INT x:
 SEQ
 ask ? x -- take question
 a0 ! 0
 ans ! x -- return answer
 b0 ! 0
 SYNC bar -- wait for the others
 c0 ! 0
:

PROC P1 (CHAN INT a1!, b1!, c1!,
 CHAN INT ask!, ans?, ping?, BARRIER bar)
 WHILE TRUE
 INT x:
 SEQ
 ask ! 0 -- ask question
 ans ? x -- wait for answer
 a1 ! 0
 b1 ! 0
 SYNC bar -- wait for the others
 c1 ! 0
 ping ? x -- wait for more info
:

PROC P2 (CHAN INT d0!, d1!, ping!, BARRIER bar)
 WHILE TRUE
 SEQ
 SYNC bar -- wait for the others
 d0 ! 0
 ping ! 0 -- update neighbour
 SYNC bar -- wait for the others
 d1 ! 0
 ping ! 0 -- another update
:

PROC Device (CHAN INT a0!, b0!, c0!,
 CHAN INT a1!, b1!, c1!, d0!, d1!)
 CHAN INT ask, ans, ping:
 BARRIER bar:
 PAR ENROLL bar
 P0 (a0!, b0!, c0!, ask?, ans!, bar)
 P1 (a1!, b1!, c1!, ask!, ans?, ping?, bar)
 P2 (d0!, d1!, ping!, bar)
:

channel a0, b0, c0, a1, b1, c1, d0, d1, ask, ans, ping, bar

P0 = ask -> a0 -> ans -> b0 -> bar -> c0 -> P0
P1 = ask -> ans -> a1 -> b1 -> bar -> c1 -> ping -> P1
P2 = bar -> d0 -> ping -> bar -> d1 -> ping -> P2

P0P1 = (P0 [| {ask, ans, bar} |] P1) \ {ask, ans}
Device = (P0P1 [| {ping, bar} |] P2) \ {ping, bar}

time. For an event in the sync-set (of the parallel operator) to occur, both process operands must
engage. The hiding expression, process \ hide-set, makes events in the hide-set locally declared
within process (i.e., unrelated to same-named events elsewhere).

With the CSP definition of Device, we can start asking questions. Loading it into the FDR2 GUI, we
straight away discover it is free from deadlock and livelock (which CSP calls divergence), simply by
clicking the buttons labeled to perform these checks. To check whether particular event sequences
may initially be performed by Device, define processes that have no choice in the matter – e.g.

Now, ask whether each of these trace refines Device. FDR2 reports that T0 does, which means that
any trace (sequence of events) it performs can also be performed by Device. FDR2 reports that T1
does not, which means that one (at least) of its traces cannot be performed by Device. Comparing the
two test processes, we can immediately deduce the fault lies in the mis-ordering of b1 and d0.

Let’s ask a more difficult question about the continuously running system. Suppose the robot would do
something very bad if its controller Device were ever to signal twice on a0 without a signal on
either d0 or d1 in between – an in-service failure. Might this happen? Simple: write a process that
monitors the signals from Device, looking for the bad scenario and deadlocks the system if spotted.
For a programmer, this is just another function to write (though we need a bit more CSP-M):

The parameter to Check records how many a0 signals have happened since the last d0 or d1. If this
reaches 2, Check stops and leaves CheckDevice deadlocked (since Check and Device must
synchronise on all signals from Device). FDR2 quickly confirms that CheckDevice is free from
deadlock. Hence, the feared in-service problem cannot happen. Q.E.D.

Protocol checking monitors, such as Check, are sometimes used live (e.g. in device drivers) to ensure
correctness at run-time. It is important to note that we are using Check purely for static analysis – it
has no role at run-time and, therefore, no impact on performance.

So far, our checks have concerned safety – namely that our system will not do incorrect things. More
strongly, we may need to consider liveness – namely that our system will do the right thing in all
circumstances. To do this, we need to check that our system failure refines a specification of all those
right things. A CSP failure is a state that a system reaches where it may refuse to synchronise with its
environment on some specified set of events. Any failure of a failures-refinement of a specification
will be an allowed failure of that specification – therefore, OK. Here is an explicit specification of all
the signal patterns Device must be able to perform – it’s written from our intuitive understanding for
Device’s behaviour (described in the middle of page 2):

The interleave operator, |||, is shorthand for the parallel operator with an empty sync-set. It means
the event sequences of its operand processes may interleave freely. Again, FDR2 quickly confirms that
Device failure refines DeviceSpec. In fact, the reverse is also confirmed – so Device and
DeviceSpec have exactly the same traces and failures. Device was structured as a network of
three sub-processes to reflect computations (abstracted away here) naturally located within those
components. DeviceSpec shows us all patterns of synchronisation Device can and will perform,
on demand from its environment.

T0 = a0 -> b0 -> a1 -> b1 -> d0 -> c0 -> c1 -> STOP
T1 = a0 -> b0 -> a1 -> d0 -> b1 -> c0 -> c1 -> STOP

Check (n) =
 if n >= 2 then STOP else
 a0 -> Check (n+1) [] d0 -> Check (0) [] d1 -> Check (0) [] -- "[]" means wait for one or more
 a1 -> Check (n) [] b0 -> Check (n) [] b1 -> Check (n) [] -- of the operand processes to be
 c0 -> Check (n) [] c1 -> Check (n) -- able to run; choose one and run.

CheckDevice = Device [| {a0, a1, b0, b1, c0, c1, d0, d1} |] Check (0)

DeviceSpec =
 a0 -> (b0 -> SKIP ||| a1 -> b1 -> SKIP); (c0 -> SKIP ||| c1 -> SKIP ||| d0 -> SKIP);
 a0 -> (b0 -> SKIP ||| a1 -> b1 -> SKIP); (c0 -> SKIP ||| c1 -> SKIP ||| d1 -> SKIP); DeviceSpec

Reflection

Similar exercises to those presented here were worked though live in a graduate class at UNLV in the
last academic year, as part of a specialist concurrency module. Previously, they had studied a range of
approaches to concurrency, including material from the undergraduate Concurrency Design and
Practice [6] course (to over 60 second year students last year at the University of Kent) discussed at
last year’s workshop [7]. This material on verification will be added to the Kent course next year.

By the time of this exercise, students were comfortable with using occam-π in several non-trivial
projects (thousands of interacting processes). So, the example system here would be considered fairly
trivial. Nevertheless, if the application were safety critical, it was appreciated that relying just on our
intuition (based on understanding the low-level concurrency semantics of occam-π) was unsafe.

During the exercise, students were given an overview (through examples) of the syntax of CSP-M,
with the semantics of its operators defined by relating them to occam-π syntax and semantics. The
functional nature of CSP-M, as opposed to the imperative nature of occam-π, was no particular
obstacle. Using FDR2 through its GUI is a bit old-fashioned (by modern GUI standards), but easy
enough to manage the operations described above. The students tried their own test sequences of
signals from Device and correctly obtained confirmation or rejection. Writing specific checking
processes for long-term dangers (like Check) was harder, but they warmed to this with more practice
with CSP-M. What-ifs (e.g. does Check still hold if the pings are removed? Answer: no!) could be
explored without running any code. Writing suitable specifications and working on failures refinement
was beyond the scope of this exercise. We hope for more time next year.

occam-π enables concurrency to be used to simplify complex system design. Its run-time system
imposes memory overheads of no more than 32 bytes per process and run-time overheads for
synchronisation of the order of tens of nanoseconds – and it eats multicore nodes for breakfast. Small
memory/power platforms and large scale complex system modelling (millions of processes) are
addressed. It teams well with CSP to provide rich and flexible analysis. Future effort will be made to
tie occam-π directly with the FDR model checker, so that only one syntactic representation is needed.

An intriguing observation from this story is that real verification of the behaviour of communicating
processes is achieved, even though we have engaged in only simple reasoning ourselves. The status of
the judgements from FDR2 is formal proof (although purists may descend to complaints about the lack
of formal proof of the correctness of the FDR2 implementation, the C++ compiler with which it was
compiled, the computer hardware on which it was run, etc.). Those complaints apart, this verification
is a significant step forward in gaining confidence in our concurrent systems – yet all we feel we have
done is program! This brings concurrency verification into the realm of students and mortals. Further
reading may be found in [8].

References

[1] Hoare, C. A. R. 1985. Communicating Sequential Processes. Prentice-Hall.
[2] Roscoe, A. 1997. The Theory and Practice of Concurrency. Prentice Hall.
[3] Welch, P. and Barnes, F. 2005. Communicating Mobile Processes: introducing occam-π. In “25 Years of CSP”, A.

Abdallah, C. Jones, and J. Sanders, Eds. Lecture Notes in Computer Science, vol. 3525. Springer, 175–210.
[4] Barnes, F.R. and Ritson, C.G. 2010. Checking Process-oriented Operating System Behaviour using CSP and

Refinement. ACM SIGOPS Oper. Syst. Rev. 43, 4 (Jan. 2010), 45-49. www.cs.kent.ac.uk/pubs/2009/2983/
[5] Formal Systems (Europe) Ltd. 2007. FDR2 (Failures, Divergences, Refinement) model checker, download page:

www.fsel.com/software.html
[6] Welch, P.H. 2010. Concurrency Design and Practice. www.cs.kent.ac.uk/projects/ofa/sei-cmu/
[7] Welch, P.H. and Barnes, F.R.M. 2009. Concurrency First. Position paper, First Workshop on Curricula in

Concurrency and Parallelism, OOPSLA 2009. www.cs.kent.ac.uk/projects/ofa/cfc/phw-frmb-
position.pdf (slides: www.cs.kent.ac.uk/projects/ofa/cfc/concurrency-first-cfc-2009.ppt,
www.cs.kent.ac.uk/projects/ofa/cfc/concurrency-first-cfc-2009.pdf)

[8] Welch, P.H. and Pedersen, J.B. 2010. Santa Claus: Formal Analysis of a Process-oriented Solution. ACM Trans.
Program. Lang. Syst. 32, 4, Article 14 (April 2010). http://doi.acm.org/10.1145/1734206.1734211

