
Ready-For-Use: 3 Weeks of Parallelism and Concurrency
in a Required Second-Year Data-Structures Course ∗

Dan Grossman
University of Washington
djg@cs.washington.edu

1. Introduction and Overview
There is a big difference between believing an undergraduate cur-
riculum ought to expose students to concurrency early and actu-
ally doing it — and doing it in a way that non-experts can teach
and that fits within other curricular constraints. I argue that a core
data-structures course for second-year students (after introductory
programming but before more specialized senior-level courses) is
an ideal place for a three-week introduction to basic concepts in
shared-memory parallelism and concurrency. This basic introduc-
tion need not, cannot, and should not produce sophisticated multi-
core programmers; the purpose is to introduce enough key concepts
on which later courses can rely.

More important than this philosophical position is that I have
done it: Parallelism and concurrency are now major topics in my
department’s required data-structures course. Because I am un-
aware of other curricular resources covering the material in this way
— for second-year students in a data structures course using Java
— I developed my own. I have packaged these materials, includ-
ing course notes for students to read, lecture slides, homeworks, a
programming project, and sample exam problems, such that they
should be usable by others.

This position paper briefly describes the principles, content, and
advantages of this approach.

2. Context
With the ubiquity of multicore architectures, many people right-
fully want to revise the undergraduate curriculum to introduce con-
currency concepts earlier and more often. At the University of
Washington, our first systematic major revision of required second-
year courses in decades provided a natural opportunity. We mod-
ernized our topics while reducing the number of required courses
so that students can choose paths earlier in the ever-growing field
of computing. So a full required ten-week course (we have a quar-
ter system) on concurrency was out of the question given all the
other fundamental topics. Three weeks seemed “about right” but
that requires integrating the material into a course covering other
topics. My position is that our choice of the data-structures course
was optimal.

2.1 Where This Material Did Not Fit
Our two-quarter introductory programming sequence is large,
strong, and stable. Change is difficult, with a large course staff,
thousands of students a year, and coordination with community
colleges who teach the same course. There is no room for concur-
rency among basic topics like conditionals, arrays, linked lists, and
recursion. It is also unclear these students need to see concurrency:

∗ This position paper was accepted for presentation at the 2010 Workshop
on Curricula for Concurrency and Parallelism, held at SPLASH 2010.

75% of students in our second course and 88% of students in our
first course will not become computer-science majors.

A second-year software-design course certainly could deal with
concurrency, such as callbacks for GUIs. But relegating the mate-
rial there gives the impression that concurrency is only a complica-
tion rather than a fundamental issue in computing. A second-year
hardware/software interface course does not, by design, use high-
level languages such as Java where fundamental software issues are
easier to teach (which is why introductory courses use them).

Senior-level courses such as operating systems, computer archi-
tecture, parallel programming, graphics, etc. can and should dis-
cuss concurrency. Indeed, a key point of earlier exposure is to have
shared background and not have to “start threads from scratch” long
after students should have seen them.

2.2 Where This Material Did Fit
Our second-year data-structures course follows introductory pro-
gramming and a discrete math course (boolean and first-order logic,
induction, finite-state machines, sets and relations, etc.). The paral-
lelism and concurrency unit follows classic material on asymptotic
complexity, balanced trees, priority queues, hashtables, sorting al-
gorithms, and graphs. In our revision, we removed (or moved to
senior-level algorithms) several less common data structures and
algorithms. NP and NP-completeness is in another required course,
but on a semester system it might fit with data structures.

The key insight is that an introduction to shared-memory multi-
threading, divide-and-conquer parallel algorithms, and lock-based
mutual exclusion fits very well in this course.

3. What The Material Covers
Several (debatable) principles guide the presentation of the material
and what is omitted despite being valuable.

1. Distinguish parallelism and concurrency. By parallelism, I
mean using extra computational resources to solve a problem
faster. By concurrency, I mean correctly and efficiently manag-
ing access to shared resources. While using these terms in this
way is not entirely standard, the distinction is paramount.

2. Stick to shared memory. Without time for multiple program-
ming models, mention message-passing, dataflow, and data par-
allelism only briefly. Shared memory fits best with the rest of
the course, which ignores external storage except when study-
ing B trees.

3. Focus on programming patterns and guidelines. It is not enough
to explain how threads or locks work. Idioms are essential.

4. Use Java and Java 7’s ForkJoin Framework. Present threads,
lightweight tasks, locks, and condition variables as primitives.
Do not discuss how to implement the primitives, schedule
threads, etc. That is, stick to the application-developer’s view.



The unit begins by introducing shared memory (multiple threads
with private call-stacks, but one shared heap) and some Java thread-
ing basics. We then distinguish parallelism from concurrency as
defined above. We then study parallelism first, using no synchro-
nization other than fork-join. The parallelism approach is heavily
influenced by the work of Guy Blelloch, Charles Leiserson, and
others. Unlike them, I am not an expert: anyone who can teach data
structures can teach this material.

3.1 Parallelism
To motivate fork-join parallelism, we consider an algorithm for
summing an array’s elements using an explicit number of threads.
We discuss reasons this algorithm has brittle performance. For
example, the number of processors available to a user program
may fluctuate. We therefore turn to a divide-and-conquer approach
where a thread sums a subrange by summing the two halves in par-
allel and then adding the results. Because this style is infeasible us-
ing Java’s heavyweight threads, we use (a sliver of) Java’s ForkJoin
Framework, for which I wrote notes suitable for beginners. We do
not program in terms of built-in patterns like reductions over ar-
rays because students benefit from first seeing and analyzing the
efficiency of patterns like reductions done manually.

We then analyze parallel algorithms in terms of work T1 (the
time it would take 1 processor) and span T∞ (the time it would
take an infinite number of processors). We state without discussion
of implementation that the framework gives an expected run-time
guarantee of O(T1/P+T∞) for P processors and discuss why this
is asymptotically optimal. We then discuss Amdahl’s Law, and for
homework students plot depressing consequences like how much
of a program’s execution must be parallelizable to achieve a 50x
speed-up given 256 processors.

After concluding that many problems can be solved just with
parallel maps and reduces, we learn a couple surprising non-trivial
parallel algorithms. I chose parallel prefix, parallel quicksort (in-
cluding using auxiliary storage to parallelize the partition), and par-
allel mergesort. The first two fit together well because quicksort’s
parallel partition uses parallel prefix as a subroutine.

3.2 Concurrency
The concurrency unit is presented later, after students are comfort-
able with multiple threads of execution. We point out that our fork-
join programs never accessed the same memory at the same time.
But suppose data structures considered earlier in the course (stacks,
priority queues, hashtables, etc.) need to handle concurrent access
correctly. What does that mean? How do we do it?

To stick with widely-available technology, I focus on using
Java’s locks for achieving mutual exclusion. The primary dan-
ger we discuss is race conditions, but here I draw another under-
appreciated distinction. There are data races, which must always
be avoided, and there are bad interleavings (often called higher-
level races), the definition of which depends on the abstraction be-
ing implemented. From this perspective the term “race condition”
is annoyingly unilluminating: I wish we called data races simulta-
neous access errors.

Locks are difficult to use correctly in non-trivial programs, so
a full lecture discusses programming guidelines, such as those
sketched in the first chapter of Goetz et al’s Java Concurrency In
Practice. I emphasize that most memory should be thread-local or
immutable (a great reason for functional programming), that crit-
ical sections must be neither too small nor too large, that coarse
locking is an easier starting point, etc. Students get good at find-
ing and explaining bad interleavings for short examples like imple-
menting a stack “peek” operation as a “pop” followed by a “push.”

Left until the end are important discussions on deadlock,
reader/writer locks, and condition variables. Deadlock can wait

because simple examples acquire one lock at a time. Reader/writer
locks fit well with the issue that simultaneous reads are okay, which
arises when discussing data races. Condition variables are difficult
to teach to novices, particularly since the wait and notify meth-
ods in Java’s Object class do not support two conditions attached
to the same lock, which is the preferred way to implement the
canonical example of a bounded buffer. It is tempting to drop con-
dition variables, but I feel some notion of passive waiting and noti-
fication is part of a proper introduction. Perhaps a blocking queue
could be presented as a “primitive” on top of which something else
like a pipeline could be built.

4. Why Data Structures Is a Natural Place
By teaching the material at a high level of abstraction, it fits well
with the other topics in the course. Students have just learned
divide-and-conquer sequential algorithms and how to reason asymp-
totically, so divide-and-conquer parallel algorithms are natural.
Constant-factor issues are also analogous: A particularly nice con-
nection is teaching that in practice sequential quicksort switches to
an O(n2) sort for small n, exactly like parallel algorithms switch
to sequential variants below a cut-off. More generally, a major
theme of a data-structures course is the power of an O(n) height
tree having O(2n) nodes, which is why simple divide-and-conquer
algorithms have exponential parallelism.

For concurrency, data structures like queues and hashtables pro-
vide most of the canonical examples for bad interleavings. Revisit-
ing previous abstractions and considering thread safety is fun and
timely. A bounded buffer is a queue that blocks instead of raising
exceptions when it is empty or full. Mostly-unchanging hashtables
can motivate reader/writer locks.

5. Available Materials
Unaware of suitably short and introductory texts for this material,1

I developed my own materials. I am very eager to have others use
and adapt my work. I have available at
www.cs.washington.edu/homes/djg/teachingMaterials:

• Written reading notes for students (and instructors!) that cover
all the material, about sixty pages in total

• Lecture slides, paper-and-pencil homework exercises, and sam-
ple exam questions

• A programming project using parallelism to (at least in theory)
more quickly process real U.S. census data. It comes with a
simple GUI that makes the program much more fun to use.

I strived to extract the materials from the particulars of my course
so that they can be easily adapted. I have also provided the source-
code for everything, even the reading notes, and have no problem
with any educator doing whatever they want with the materials.

6. Status and Call-For-Feedback
I taught this course for the first time in Spring 2010 and it was
a great success. In Summer 2010, graduate student Tyler Robison
successfully taught the course as well (he was a teaching assistant
for the Spring offering). Three other faculty will teach the course
over the next year. While I am sure each instructor will significantly
adapt the topics and materials to his/her needs, I feel strongly that

1 Cormen et al’s Introduction to Algorithms, 3rd Ed. has a more advanced
and high-level take on fork-join parallelism, but no mutual exclusion.
Horstmann and Cornell’s Core Java, Vol. 1, a recommended reference for
my students, discusses Java’s threads, as do many other programming ref-
erences. A full discussion of other options is beyond our purpose here.

www.cs.washington.edu/homes/djg/teachingMaterials


the material does not and must not require expertise in multithread-
ing. Experts should develop complementary senior-level courses. I
believe such courses will be much better if students “arrive” with
the fundamentals described here behind them.

While I am seeking to advertise my work so that it may prove
broadly useful, I am also eager to receive constructive feedback.
What could be improved? What is too difficult for others to teach?
How can this material fit in different curricula? How can the
(rough-draft) written course notes better explain the material?

Acknowledgments: Tyler Robison and Brent Sandona were great
teaching assistants for a new course. Larry Snyder was a valuable
sounding board. The 2009 Multicore Programming in Education
workshop participants heavily influenced my design.


