Concurrency and Parallelism as a
Medium for Computer Science Concepts

Steven Bogaerts Kyle Burke

Brian Shelburne Eric Stahlberg

Department of Mathematics and Computer Science
Wittenberg University
Springfield, OH 45501

USA

{sbogaerts, kburke, bshelburne, estahlberg}@wittenberg.edu

Abstract

This paper argues that the integration of concurrency amdl-pa
lelism topics throughout the computer science curricul@mdnot
require a significant reduction in coverage of more “stadtitop-
ics. This is accomplished by recognizing that concurremzy zar-
allelism can be used as a medium for learning about othedateln
topics, rather than as an additional topic to cover. Thigpapgues
this point and describes ongoing work towards it.

Categories and Subject Descriptors K.3.2 [Computers and Edu-
cation]: Computer and Information Science Education — computer
science education, curriculum

Keywords computer science curriculum, concurrency, parallelism

1. Introduction

In considering curricula for concurrency and paralleligris, useful
to make an analogy. Consider object-oriented programn@®@F).
At its core, OOP is a different paradigm from imperative peog-

We argue that the same can and will be said for questions of par
allelism and concurrency education. There will always béaae
for an advanced course in parallelism, but this should natbe
only place for such topics. Like OOP, parallelism is too lokoa
reaching to be limited to a single advanced course. As suahym
computer science educators have recommended the “spghikdf
parallelism throughout the curriculum (e.g., [1], [2]). iThpaper
argues further that the best way to accomplish this whilesact
rificing traditional content is to recognize parallelismaasomple-
mentarymedium for learning various computer science topics. It
does require some additional background in basic mechamnits
once these basics are covered, parallelism can be used ini-com
nation with traditional approaches for learning computgersce.
The key is that this can be done without significant elimiatf
other material; rather, other material is simply learngdulgh the
medium of concurrency and parallelism.

The computer science faculty at Wittenberg University, da ¢
operation with colleagues from Clemson University, are kiray
under a three-year National Science Foundation graith prin-

ming, the primary paradigm in use decades ago. As OOP was de-cipal investigators Eric Stahlberg and Melissa Smith, tbthese

veloped, we can imagine posing questions similar to thoghisf

workshop: Should OOP be taught in introductory computesrsiz

courses? Should OOP topics be "sprinkled” into existing ses?
Of course there are still many variations in curricula, bugén-

ideas into practice in a total redesign of our curriculumisTgart-
nership is a direct response to important challenges fasrimajler
institutions and departments. Faced with limited resaiioédoth
personnel and hardware, it became evident that integrafidine

eral we can see how these questions have been answered. Whilgundamentals was essential to eliminate the need to addtafid s

there is a place for a high-level OOP course, object-oribotmn-

an elective course. Furthermore, as we argue in this pagebew

cepts are by no means relegated only to such a course. CS1 typiieve that much traditional course content can be coverssligh

ically includes the use of objects and basic class construcA
data structures course often includes the creation ofatistiata
types with classes. Graphics courses can make use of almstrac
through classes as well as through procedures. The inolugio
these OO topics has necessitated some additional timertoriea
chanics, but it is fair to say that many of the topics of them&ses
are simply being taught through the medium of OO now, rather
than solely through the medium of imperative programming- F
thermore, while perhaps some sacrifices have been madekeyost
concepts of imperative programming have not been sacriticed
achieve this OOP coverage.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

SPLASH 10 10/17/2010, Reno, NV.
Copyright© 2010 ACM ... $10.00

the medium of parallelism and concurrency.

Thus a key component of our work in this grant has gone to-
wards a redesign of content in existing courses to make uthesof
medium. This redesign is under development for coursesathe
computer science curriculum, as well as for applicationges in
bioinformatics, computational models and methods, andpcan
tional chemistry. To illustrate, the remainder of this piasi paper
describes our work in CS1 and programming languages cqurses
plus some additional thoughts on computer organizationsesu

2. Enhancementsin CS1

Similar to OOP as discussed above, some background material
required before students can use parallelism as a mediuledior-
ing standard CS1 topics. In this section we describe thik-bac
ground material, and then discuss how parallel programrsng
used as a medium for learning other CS1 topics.

INational Science Foundation grant CCF-0915805, SHF:SRislliCol-
laborative Research: Accelerators to Applications — Sthmeging the Un-
dergraduate Computer Science Curriculum

2.1 Background Material

The background material comes in two parts: 1) a high-leve
overview of parallel computing concepts and technologéex]
2) an introduction to basic required syntax.

The high-level overview includes discussions in:

¢ How non-technical tasks are often naturally done in pdralle

e Various physical class activities in which the studenty pkee
part of cores, messages, etc, to vividly illustrate basicepts.
Some of these activities are based on work in [3].

¢ The terminology of concurrent and parallel computing.

Depending on constraints and preferences, this materialbea
covered in one to four hours of in-class time.

Since our CS1 course is taught in Python, the introduction to

syntax portion of the background material covers basic fiskeo
Pythonmultiprocessing package, which enables the utilization
of multiple cores. This package is quite simple syntadgc®ithin
one to two hours of lecture time, students should understiaad
basic syntax of process creation, communication, and sgniza-
tion.

2.2 Paralldism asaMedium for CS1 Material

Once this background material is covered, much remainistgun-
tion in parallel computation can occur in CS1 with very &tdd-
ditional cost, and thus without sacrificing any additionainslard
CS1 content.

(HPC) languages into the course. In studying HPC languates,

| dents can see how new syntax supports multi-threadingy;iaties

common concurrency issues, and simplifies vital parallékpas.
Language features such as these mirror core differencegtera-
tive languages studied via the logic and functional paradig

In spring 2010 we integrated discussion of the HPC language
Chapel [4] into our programming languages course. Much ef th
syntax is similar to imperative languages, so students wakeleto

jump right into the parallel tools. They enjoyed working fvthe

added language features, such as timers, variable acoasslsp
and the built-in reduce and scan operations.

The assimilation of HPC languages into the programming lan-
guages course enabled attention to parallel programmiiig el
remaining focused on a core mission of the course: to leasatab

various programming paradigms and language design to suppo

particular functions. The new HPC languages, such as Chanel

vide an excellent medium for exploration of these concepts.

4. Enhancementsin Computer Organization

It should be noted that computer organization courses @itlglin-
clude parallelism. Parallelism is seen at the digital Idgiel in
combinatorial circuits, at the instructional level in pipes and
super-scalar architectures, and in the way I/O is done using
terrupts and DMA. Thus integrating parallelism into a comepu
organization course is simply a matter of making the inhiepan-
allelism more explicit. Additional opportunities for demsirating
parallelism can be obtained by introducing "parallel” haade de-

For example, suppose students are learning how to use mul-Sign languages such as VHDL (VHSIC (Very-High-Speed Inte-

tiple functions with arguments, to split a larger task inbgital
chunks. Suppose they are practicing this on a program thmat co
putes the roots of a binomial using the quadratic formula.céfe
imagine breaking this up into @ain, computeDiscriminant,

grated Circuit) Hardware Description Language) [5]. Fareple,
VHDL can be used to describe complex parallel circuits likaay
look-ahead adder, with its parallel propagation of "cdtry@om-
parisons can also be made to the more serial approach optle ri

and computeQuad. Then the students can be asked what should carry adder. Furthermore, earlier exposure to hardwarerigéisn
become a common question: what parts of the computationean b langauges like VHDL and Verilog [6] can pave the way for later

done in parallel? There are many possibilities, but one lgirap-
tion is to compute simultaneously the "plus” and the "minpsift
of the numerator in the quadratic formula. This requires ifiyoty
computeQuad to take a sign argumentain should then simply
spawn two processes: one callisgmputeQuad with +1, the other
with -1.

courses in architecture and hardware design.

5. Conclusion

In this position paper we have argued that, while some newiaat
is required, students can become very proficient in conoayrand
parallelism within the context of the standard CS currioulWVith

Thus in this example we see that students have received goodgarefyl integration of these topics, this can be accomediskithout

practice in splitting a task up into functions and passingdeel ar-
guments. The only difference here from a typical CS1 lesstmeit
students are getting practice in this in both sequentialpzmellel
programming. The additional practice in parallel prograngrhas
been obtained without sacrificing any coverage of functi@msl
without significantly adding to required course time.

a significant reduction in material covered in other areagh&,
concurrency and parallelism can serve as a medium in whiectyma
standard topics are discussed.

References

To briefly consider another example, a common CS1 exercise is [1] Nevison, C. H. 1995. Parallel Computing in the Undergite

to find the maximum key in a list. Again, students should bedsk
how could this be done in parallel? A simple answer is to $pét
listinto n segments assignedsi@rocessors. Each process finds the
largest key in its segment, and a master process finds thge3ar
of the largest”, as it were. This simple approach gives sttgle
good practice inif statements and looping through a list, all in
the context of parallel programming. Again, the key is thas t
practice in parallel programming is obtained in a mannerliyho
integrated in the ordinary CS1 curriculum, while neitherrgicing

the original content nor adding required course time.

3. Enhancementsin Programming L anguages

A significant component of many programming languages esurs
is the exploration of various programming paradigms and laow
guages are designed to facilitate particular tasks wittiaradigm.
Thus it is a natural fit to integrate high-performance cormaut

Curriculum. InComputer, 28(12): p. 51-56. IEEE Computer Society.

[2] Meredith, M. J. 1992. Introducing Parallel Computingairthe
Undergraduate Computer Science Curriculum: A Progres®iiRen
ACM SIGCSE Bulletin, 24(1): p. 187-191. New York, NY, USA: ACM
Press.

[3] Maxim, B. D.; Bachelis, G.; James, D.; and Stout, Q. 198@-oducing
Parallel Algorithms in Undergraduate Computer Sciencer§esi In
Proceedings of the Twenty-First SGCSE Technical Symposium on
Computer Science Education, p. 255. New York, NY, USA: ACM
Press.

[4] Chamberlain, B. L.; Callahan, D.; Zima, H. P. 2007. Platal
Programmability and the Chapel Language. Iriternational Journal
of High Performance Computing Applications, 21(3): p. 291-312.

[5] Perry, D. L. 1993. VHDL (2nd Ed.). New York, NY, USA: McGna
Hill, Inc.

[6] Thomas, D. E.; Moorby, P. R. 1998. The Verilog Hardwares€retion
Language (4th Ed.). Norwell, MA, USA: Kluwer Academic Puiers.

