
A Language-oriented Approach to Teaching Concurrency

Tom Van Cutsem
∗

Vrije Universiteit Brussel
Brussels, Belgium

tvcutsem@vub.ac.be

Stefan Marr
†

Vrije Universiteit Brussel
Brussels, Belgium

smarr@vub.ac.be

Wolfgang De Meuter
Vrije Universiteit Brussel

Brussels, Belgium
wdmeuter@vub.ac.be

ABSTRACT
This paper argues in favour of a language-oriented approach
to teach the principles of concurrency to graduate students.
Over the past years, the popularity of programming lan-
guages that promote a functional programming style has
steadily grown. We want to promote the use of such lan-
guages as the appropriate basic tools to deal with the “mul-
ticore revolution”.

We describe some of these programming languages and
highlight two of them: Erlang and Clojure. We use these
languages in a new graduate-level course that we will teach
starting next academic year. Our goal is not to convince
the reader that Erlang and Clojure are the best possible
choices among this pool of candidate languages. Rather, our
goal is to promote a functional programming style to tackle
concurrency issues, and to teach this style in a programming
language that makes it easy, straightforward and convenient
to use that style.

We do not want to get bogged down in a discussion on
the usefulness or importance of learning new programming
languages. For a good summary of the diverse advantages of
studying new programming languages, we refer to a recent
white paper by the ACM SIGPLAN education board [6].

1. BACKGROUND
Starting next academic year, the first author will teach

a new graduate-level course on concurrency at the Flemish
Free University of Brussels in Belgium. As in many other
institutions worldwide, our computer science curriculum is
slowly beginning to adapt to the reality that virtually every
new computer is a parallel machine.

To date, our computer science curriculum featured just
one course that touches upon concurrent programming. How-
ever, this course focuses on the traditional topics of using

∗Postdoctoral Fellow of the Research Foundation, Flanders
(FWO).
†Funded by a doctoral scholarship of IWT-Vlaanderen.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCP 2010 Reno, Nevada USA
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

concurrency for parallelism and high-performance comput-
ing (HPC). As a consequence, the course mostly focuses on
low-level concurrency primitives, employing libraries such as
Pthreads, OpenMP and MPI for C/C++.

Our new course is an opportunity to teach students the
principles of concurrent programming without necessarily
tying this to the domain of HPC. Moreover, our university
has a good track record of using a language-oriented ap-
proach to teach many fundamental computer science princi-
ples (first-year students are taught the classic Structure and
Interpretation of Computer Programs course [1], and are
well-versed in Scheme). Our experience suggests that the
difficult problems of concurrent programming would be bet-
ter taught using a language-oriented approach, rather than
by using libraries bolted onto existing languages that seem
inherently unfit for the job.

2. EMBRACING IMMUTABILITY
The message that we want to bring across to students is to

mitigate the issues of concurrent programming by embracing
a functional programming style. Functional programming
is a broad concept, often associated with referential trans-
parency, immutability, determinism, higher-order abstrac-
tions and expressive parametric type systems. Our focus
here is mostly on immutability. We want to teach students
how to program with immutable data structures.

Why this focus on immutability? Joe Armstrong put it
succinctly by stating that “Side effects prevent concurrency”
and “the absence of side effects is the key to increasing con-
currency” [2]. And why via a new programming language?
Well-designed languages make the right approach to solv-
ing a problem the “path of least resistance”. Although one
can adopt a functional programming style in virtually any
language, that does not necessarily make it the natural way.
Also, adopting a functional programming style in a language
students already know may make it harder for them to un-
learn their existing habits in using the language. Finally, it
is hard to maintain a functional programming style through-
out a larger program if the language’s core libraries do not
embrace this style as well.

3. CHOOSING A LANGUAGE
We used the following criteria to create a list of candidate

languages for the course. First, the language should be suf-
ficiently practical for students to experiment with (i.e. it
needs a reliable implementation and sufficient documenta-
tion). Second, the language has to promulgate a functional
programming style. Third, the language has to have some-

thing out of the ordinary – to paraphrase Alan Perlis: the
language should change the way students think about (con-
current) programming, or else it is not worth knowing.

Below we list potential candidate languages that adhere to
the above criteria. We split them up according to their typ-
ing scheme – statically versus dynamically typed, for reasons
that we discuss later.

Statically typed languages.
Haskell is a practical yet pure functional language. Si-

mon Peyton-Jones’s paper on Software-transactional Mem-
ory [10] is a particularly good starting point for concurrent
programming in Haskell. Another candidate is F#, which
is one of the main supported languages on Microsoft’s .NET

platform. It has built-in abstractions to do asynchronous
programming and to easily compose asynchronous (paral-
lel) tasks. Scala has a good actor library that enables
Erlang-style message-passing concurrency. Although Scala
promotes a functional programming style, it makes it just as
easy to write traditional imperative code. Also, its actors are
not truly isolated from one another (i.e. they can still share
state). JoCaml is a dialect of OCaml that uses the Join-
calculus [5] to coordinate concurrent activities. Go, while
not being a functional language, features an interesting con-
currency model that derives from Hoare’s CSP and Milner’s
π-calculus. Go features concurrent goroutines that commu-
nicate with each other synchronously via channels. Unfortu-
nately, Go is designed primarily as a systems programming
language, so it still embraces imperative programming.

Dynamically typed languages.
Erlang started out as an experimental programming lan-

guage developed at the Computer Science Lab of telecom
giant Ericsson. Syntactically, it derives from Prolog. Its
concurrency model derives from Hewitt and Agha’s Actor
model [7]. Erlang features lightweight concurrent processes
that communicate via asynchronous messages. Processes are
isolated (they do not share memory). The process isolation
is the basis for Erlang’s failure handling model, which allows
the creation of highly reliable concurrent systems.

Clojure is a dialect of LISP that uses the JVM as its
runtime platform. It embraces the use of immutable data
structures. Even though Clojure is a LISP dialect, it shuns
LISP’s imperative language features. By default, variables
are immutable. It features Software Transactional Memory
to coordinate updates to Refs (mutable references). It also
features agents which support message-passing concurrency.
Unlike Erlang, Clojure’s agents are not fully isolated and
require a shared-memory architecture to communicate.

Oz is a multi-paradigm language, influenced by concur-
rent logic programming languages. It features lightweight
threads that coordinate through shared (logic) variables, but
also has a port abstraction that can be used to build Erlang-
style processes.

4. WHY ERLANG AND CLOJURE?
Why did we settle on Erlang and Clojure as the drivers

for our course? First, our cultural background is in dynami-
cally typed programming languages. Most of our research is
done in Scheme, Lisp, Smalltalk and Javascript, so we were
prejudiced to pick a dynamically typed language. Other in-
stitutes have different cultures and would probably end up

making different choices, which is perfectly fine.
Second, Erlang and Clojure are complementary: both

epitomize a programming model for a different kind of hard-
ware model. Erlang embraces message passing, which maps
well onto distributed-memory hardware. Clojure’s promi-
nent software-transactional memory system is used to co-
ordinate updates of multiple threads on shared references.
This model is best supported by shared-memory hardware
models. Oz, while able to encode both message passing and
shared-memory concurrency, embraces neither model. That
makes it more flexible, but also less of an exemplar.

5. PROGRAMMING PATTERNS
Choosing the right concurrent language to get started is

important, but it is not sufficient. Programming languages
only offer primitives out of which more high-level abstrac-
tions can be built. Many of these high-level abstractions are
described in a language-neutral manner as patterns.

For concurrent and parallel programming, a good pattern
language already exists [9]. We will use this pattern lan-
guage to introduce students to the right high-level abstrac-
tions, but we will also ground these abstract patterns in
concrete implementations in our chosen languages.

The effectiveness and popularity of two patterns in par-
ticular will deserve further attention in our course. The
first is fork/join parallelism through divide-and-conquer al-
gorithms as pioneered by Cilk [3] and made mainstream via
Doug Lea’s Fork/Join framework for Java [8]. The second
is Google’s MapReduce [4] abstraction. It is interesting to
observe that both of these abstractions have a strong affinity
with functional programming style: fork/join algorithms are
expressed naturally using recursive functions, and MapRe-
duce is a prime example of a higher-order function.

6. CONCLUSION
This paper takes the position that the difficulties of con-

current programming are best mitigated by engaging stu-
dents in a functional programming style, in particular by
exposing them to programming with (mostly) immutable
data structures. We also feel that the best way to immerse
students in a functional programming style is by selecting a
programming language that embraces this style.

Multicore programming is hard enough as it is. We might
as well make sure that our students learn to use the best
tools available for the job.

7. REFERENCES
[1] H. Abelson and G. J. Sussman. Structure and

Interpretation of Computer Programs. MIT Press,
Cambridge, MA, 1985.

[2] J. Armstrong. Programming Erlang: Software for a
Concurrent World. Pragmatic Bookshelf, 2007.

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: an
efficient multithreaded runtime system. SIGPLAN
Not., 30(8):207–216, 1995.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150, 2004.

[5] C. Fournet and G. Gonthier. The reflexive cham and
the join-calculus. In POPL ’96: Proceedings of the

23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 372–385,
New York, NY, USA, 1996. ACM.

[6] S. N. Freund, K. Bruce, K. Fisler, D. Grossman,
M. Hertz, D. Lea, G. T. Leavens, A. Myers, and
L. Snyder. Why undergraduates should learn the
principles of programming languages, 2010. ACM
SIGPLAN Education Board White Paper.

[7] C. Hewitt. Viewing control structures as patterns of
passing messages. Artif. Intell., 8(3):323–364, 1977.

[8] D. Lea. A java fork/join framework. In Proceedings of
the ACM 2000 conference on Java Grande, pages
36–43, New York, NY, USA, 2000. ACM.

[9] T. Mattson, B. Sanders, and B. Massingill. Patterns
for parallel programming. Addison-Wesley, 2004.

[10] S. Peyton-Jones. Beautiful concurrency. In A. Oram
and G. Wilson, editors, Beautiful Code. O’Reilly, 2007.

