
SGX Enforcement of Use-Based Privacy

Eleanor Birrell∗†
Pomona College
Claremont, CA

eleanor.birrell@pomona.edu

Anders Gjerdrum‡

UIT The Arctic Univ. of Norway
Tromsø, Norway

anders.t.gjerdrum@uit.no

Robbert van Renesse§
Cornell University

Ithaca, NY
rvr@cs.cornell.edu

Håvard Johansen‡
UIT The Arctic Univ. of Norway

Tromsø, Norway
haavardj@cs.uit.no

Dag Johansen‡
UIT The Arctic Univ. of Norway

Tromsø, Norway
dag@cs.uit.no

Fred B. Schneider†
Cornell University

Ithaca, NY
fbs@cs.cornell.edu

ABSTRACT
Use-based privacy restricts how information may be used, making
it well-suited for data collection and data analysis applications in
networked information systems. This work investigates the feasi-
bility of enforcing use-based privacy in distributed systems with
adversarial service providers. Three architectures that use Intel-
SGX are explored: source-based monitoring, delegated monitoring,
and inline monitoring. Trade-offs are explored between deployabil-
ity, performance, and privacy. Source-based monitoring imposes no
burden on application developers and supports legacy applications,
but 35-62% latency overhead was observed for simple applications.
Delegated monitoring offers the best performance against mali-
cious adversaries, whereas inline monitoring provides performance
improvements (0-14% latency overhead compared to a baseline
application) in an attenuated threat model. These results provide
evidence that use-based privacy might be feasible in distributed
systems with active adversaries, but the appropriate architecture
will depend on the type of application.

KEYWORDS
Use-based privacy; privacy enforcement; SGX

ACM Reference Format:
Eleanor Birrell, Anders Gjerdrum, Robbert van Renesse, Håvard Johansen,
Dag Johansen, and Fred B. Schneider. 2018. SGX Enforcement of Use-Based
Privacy. In 2018 Workshop on Privacy in the Electronic Society (WPES’18),
October 15, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3267323.3268954

∗This work was done while Birrell was a graduate student at Cornell.
†Supported in part by AFOSR grant F9550-16-0250 and NSF grant 1642120.
‡Supported by the Research Council of Norway project numbers 250138, 263248, and
274451.
§Supported in part by NSF CSR 1422544, NIST 60NANB15D327 and 70NANB17H181,
and gifts from Huawei, Facebook, and Infosys.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WPES’18, October 15, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5989-4/18/10. . . $15.00
https://doi.org/10.1145/3267323.3268954

1 INTRODUCTION
Current approaches to privacy in networked information systems
are poorly suited to modern applications, where information is col-
lected without user awareness, and data sharing and data analysis
are pervasive. Our work explores the feasibility of enforcing an
alternate view, sometimes called use-based privacy [7, 8, 26], which
equates privacy with preventing harmful uses.

Instead of requiring informed consent from data subjects, use-
based privacy assumes there has been a societal evaluation that
has identified harmful uses. This evaluation presumably will have
balanced potential harms and potential benefits of information use—
and evaluated the countermeasures in place to prevent potential
harms—to determine which uses should be deemed harmful. A
system that avoids harmful uses is then considered to be privacy-
compliant.

Use-based privacy differs from most previous views of privacy
in three key ways:

• Use-based privacy policies do not depend on the preferences
of the individual data subject but instead focus on collective
norms.
• Use-based privacy policies describe how information may
be used rather than limiting access or transmission.
• Use-based privacy policies impose restrictions on how both
raw data and derived data may be used, and therefore govern
information flow through a system.

The first aspect of use-based privacy is philosophically distinct
from approaches such as notice and consent [9]—which empha-
size informed consent by data subjects—and from technologies
like P3P [11] that enable users to express individual preferences.
That aspect is instead similar to the philosophy of contextual in-
tegrity [1, 27, 28], which defines privacy for personal information
relative to an appropriate context. Whether a context is appropriate
is presumed to be determined by socially-defined informational
norms, which might depend on time, location, purpose, and/or par-
ticipating principals. So contextual integrity, like use-based privacy,
moves away from user-defined policies and informed consent, focus-
ing instead on elimination of harmful uses (as defined by informa-
tional norms). The second and third aspects, however, distinguish
use-based privacy from contextual integrity. Contextual integrity
ignores how sensitive information is used as it flows through a
networked information system and thus ignores derived data; it

https://doi.org/10.1145/3267323.3268954
https://doi.org/10.1145/3267323.3268954

focuses on mediating individual communications and evaluating
whether each data transmission is authorized. These philosophical
differences between use-based privacy and alternate views render
existing technical solutions ill-suited for guaranteeing use-based
privacy.

To ensure policy-compliance, use-based privacy policies must
be enforced whenever a principal uses a value. This can be accom-
plished by (1) blocking unauthorized uses—prevention—or (2) log-
ging all uses—deterrence through accountability. Both approaches in-
volve monitoring accesses, and both require the monitor to have the
appropriate use-based privacy policy and to be trusted to enforce
that policy. The monitor gets the appropriate policy if use-based pri-
vacy policies are tied to the data whose use they govern as a policy
tag; policy tags have been explored previously (e.g., [13, 23, 25, 40]).
To guarantee that the monitor is trusted, however, we need some
means for monitoring behavior by service providers—principals that
receive and use data. Existing approaches to monitoring focus exclu-
sively on read/write access control [6, 22] or on systems under the
control of a single trusted authority [29, 34] and thus are unsuited
for enforcing use-based privacy policies in distributed systems.

Recent developments in trusted hardware—e.g., Intel’s Software
Guard Extensions (SGX) [10]—offer a new basis for placing trust in
a monitor or other program. Using SGX, an untrusted principal can
provide a remotely-authenticatable proof or quote that attests some
program is running or has produced a given output. In this paper,
we investigate the feasibility of using Intel’s SGX hardware as a
root of trust, and we explore how we might leverage that root to
implement use-based privacy. An overview of relevant SGX features
is given in Section 2.3.

We explore three possible architectures for enforcing use-based
privacy in distributed systems with adversarial service providers.
In our source-based monitoring architecture, data sources—trusted
principals that store user data—run the monitors. Applications
(run by service providers) request data from data sources; only
those applications that provide appropriate credentials (e.g., SGX
quotes) can gain access to sensitive data (data that is limited by
policy to particular uses). The source-based monitoring architec-
ture provides strong privacy guarantees. It is also easily deployed;
application developers do not need to handle or interpret policies,
and enforcement is compatible with legacy applications. However,
this architecture exhibits poor performance and incurs significant
overhead for many applications. The architecture is described in
Section 3 and performance measurements are given.

The performance limitations of source-based monitoring lead us
to consider an alternative architecture called delegated monitoring,
which improves throughput and reduces latency by locating the
monitor at the service providers. Delegated monitors act as prox-
ies for local applications and use SGX quotes to prove to a data
source that they are instances of a valid monitor; local applications
use SGX to locally authenticate with the delegated monitor in or-
der to gain access to data that is limited by policy to particular
uses. The architecture provides the same strong privacy guaran-
tees while demonstrating significant performance improvements
over source-based monitoring. However, delegated monitoring is
less easily deployed than source-based monitoring, because service

providers must run a delegated monitor and because local appli-
cations must interact with that monitor and store cached policies.
This architecture is described in Section 4.

The primary shortcoming of the delegated monitoring architec-
ture is noticeable latency overhead for applications that handle lots
of data or that enforce policies for fine-grained data. To eliminate
this overhead, we consider a final architecture, inline monitoring,
which has the monitoring code inlined directly into a monitored
service provider application. This final architecture offers the best
performance, particularly for applications that handle lots of data
or fine-grained policies. However, the architecture imposes a signif-
icant burden on application developers—programmers must imple-
ment their code with calls to the inlined monitor—and this approach
is only able to guarantee privacy compliance in an attenuated threat
model. This architecture is described in Section 5.

Given the trade-offs between deployability, performance, and
privacy, we believe that the appropriate architecture will depend
on the type of application. However, we view our results as posi-
tive evidence of the feasibility of enforcing use-based privacy in
distributed systems using SGX.

2 BACKGROUND
Values originate from a data source: a data subject or a third-party
data store that is trusted by the data subject. Each data source
(1) associates an appropriate policy tag (specifying a use-based
privacy policy) with each value, thereby creating a tagged value,
and (2) distributes tagged values only in ways that ensure policy
compliance.

Tagged values are received and processed by service providers.
Service providers might themselves produce derived values, which
must be given associated policy tags. We do not assume that service
providers are trusted; they might attempt to use values in a manner
that does not comply with the associated use-based privacy policy.

2.1 Threat Models
Use-based privacy policies specify use restrictions. Adversaries are
service providers that try to use a tagged value in a manner that
violates these restrictions. Threat models characterize assumptions
about possible service provider behaviors:

Accountable Service Providers. Service providers are
rational principals that act to optimize some utility function;
they might knowingly violate use-based privacy policies
under certain circumstances, for example, to increase prof-
its. The utility function gives significant negative weight
to being detected in a policy violation, so an accountable
service provider will not run code that results in a policy
violation that some auditor might detect. It suffices to de-
tect violations in order to guarantee policy compliance by
accountable service providers.

Malicious Service Providers. Service providers here
might knowingly violate use-based privacy policies by run-
ning code that results in a policy violation—even if that
violation might be detected. Such behavior must be pre-
vented. A monitor that implements prevention is needed
to enforce policy compliance bymalicious service providers.

Accountable service providers are the appropriate threat model
if service providers are subject to legal consequences or negative
public relations. In other cases (e.g., if service providers can’t be
reliably identified or if they are irrational), service providers might
not conform to the defining assumptions for accountable service
providers and should instead be considered malicious.

2.2 Policy Language
We can express use-based privacy as Avenance policies [5]. Ave-
nance is a policy language based on reactive information flow spec-
ifications [19]; Avenance policies are interpreted as sets of privacy
automata in which the current state of each automaton gives use au-
thorizations. Syntactically, Avenance policies are JSON encodings
that can be parsed as lists of automata.

In the Avenance policy language, authorizations in a state s are
specified by conjunctions and disjunctions of authorization triples:
predicates expressed as triples (I,P,E), where I identifies an invoking
principal, P denotes a purpose, and E identifies some executable
binary. An executable type E should be used when the authorization
depends only on the program binary; purpose type P should be
used when the authorization depends on some binary-independent
context. Imay be defined as a single principal ormay be a role,Pmay
be drawn from a hierarchy of purpose labels, and Emay be specified
by a binary hash or by a type drawn from a hierarchy of program
labels. I, P, or Emay alternatively be the wildcard ∗, which matches
all principals (resp., purposes, executables). Compound components
I, P, or E are constructed using unions and intersections.

An authorization triple (I,P, E) specifies a predicate that allows
a use if the use satisfies all three component sets: I, P, and E. A
privacy automaton authorizes a use if the use is authorized by the
conjunctions and disjunctions of authorization triples specified by
the current state. And an Avenance policy authorizes a use if the
use is authorized by all of its privacy automata.

Automata state transitions are associated with environmental
events—which update the current authorizations associated with a
particular value—or synthesis events—which define the current au-
thorizations for derived values. These transitions together express
reactive policies. For example, a user might specify that a derived
value (created by combining that user’s data with other users’ data)
may be used for any use, but the raw data may only be used to
produce aggregate values. A privacy automata for this policy is
shown in Figure 1. Reactive policies are highly expressive, since
they can specify how the set of authorized uses changes as data are
transformed. However, defining such policies is likely to require
careful reasoning about the information flow through various prob-
lems; the challenges of defining Avenance policies that instantiate
a high-level goal are beyond the scope of this work.

Avenance policies are implemented in Java by the avenance
package [4] and in C by the library libav [3]. Each implementation
defines classes (resp. structs) AvAuthTriple, AvState, AvRule, and
AvPolicy. The class AvPolicy (resp. header file av.h) defines a
public interface for parsing, creating, modifying, and serializing
Avenance policies; an excerpt from the Java interface is shown in
Figure 2.

(∗, ∗, aggregate)start (∗, ∗, ∗)
aggregate

∗

Figure 1: Example Avenance policy.

public class AvPolicy {
public AvPolicy(String p){...}
public AvPolicy(List<AvRule> rls){...}

public List<AvRule> getRules(){...}
public void addRules(List<AvRule> rls){...}

public Boolean checkPermission(String i, String p,
String e){...}

public AvPolicy transition(String e){...}
}

Figure 2: The interface for the Java implementation of the
Avenance policy language.

2.3 Intel SGX
Intel’s Secure Guard Extensions (SGX) are an extension to the Intel
x86 instruction set architecture. SGX uses chip-specific hardware
keys to enable the construction of secure execution containers called
enclaves; each enclave is isolated and supports data sealing, local
attestation, and remote attestation.

Enclave Isolation. SGX enclaves provide confidentiality1 and in-
tegrity for programs (and their data) running inside the enclave.
This isolation is enforced by processor reserved memory set aside
during boot. This memory is only accessible to SGX microcode and
programs running within enclaves, and it is partitioned into 4k
pages, which are collectively referred to as the enclave page cache
(EPC). Pages in the EPC are exclusively associated with a particular
enclave and can only be accessed by that enclave. Information that
is paged-out of the EPC into regular DRAM is encrypted under a
hardware-derived key.

Data sealing. SGX enclaves are uniquely identified by an SGX
Enclave Control Structure, which includes a measurement—a 256-
bit digest of a cryptographic log recording the build process for the
enclave. Thismeasurement is used by the key generation instruction
(alongwith secrets embedded in the SGX chip) to produce hardware-
derived sealing keys. Sealing keys for an enclave depend on both
the measurement of the enclave and the hardware keys of the chip;
sealed data can only be decrypted by the enclave that originally
sealed it. Data sealing can provide confidentiality and integrity for
audit logs and for tagged values that will be temporarily stored or
handled outside the enclave.

Local Attestation. Enclave measurements are also used for lo-
cal attestation, which allows one enclave to authenticate the pro-
gram that is running in another enclave. Local attestation (between
enclaves) uses a hardware-signed (HMAC’d) copy of the enclave
1Side-channel attacks that compromise confidentiality of SGX enclaves have been
identified [20, 41]; we assume such attacks cannot undermine the confidentiality of
tagged values handled by authorized enclaves.

measurement—the report—combined with a Diffie-Hellman key ex-
change protocol to prove the identity of the program in one enclave
to the second enclave. Local attestation is used for local program
authentication.

Remote Attestation. SGX implements remote attestation using
local attestation together with a pair of dedicated, Intel-authored
enclaves: a provisioning enclave and a quoting enclave. The provi-
sioning enclave requests an attestation key from Intel and stores
it sealed under a key that can only be derived by Intel-authored
enclaves. The quoting enclave retrieves the attestation key, veri-
fies the measurement using local attestation, and signs the mea-
surement together with an optional message; the resulting signed
measurement-message pair, called a quote, can be verified by a
remote principal using Intel’s Attestation Service.

Remote Authentication. Because communications between an
application enclave and the quoting enclave are mediated by an
untrusted (i.e., non-enclave) application, quotes can be replayed
by any program. To mitigate this threat, our remote attestation
protocol requires the application enclave to fetch an application
secret ⟨s1, s2⟩ from the remote server. The server must be able to
authenticate valid secrets (in our implementation, s2 = H (s1;kDS),
where kDS is a secret key unique to data sourceDS). An application
enclave sets s2 as the message used during measurement genera-
tion and then requests a quote with that measurement, resulting
in a quote q(s2) that contains that message s2. To perform remote
authentication, the application enclave sends the pair ⟨s1,q(s2)⟩ to
the remote server. The server authenticates the secret, authenti-
cates the quote with Intel’s Attestation Service, and then uses the
authenticated credentials to make an authorization decision.

3 ENFORCEMENT BY SOURCE-BASED
MONITORING

The first step in designing an enforcement architecture for use-
based privacy is to decide which principal will be trusted to per-
form the monitoring. Principals are either data sources or service
providers; a monitor can be run at either. Since data sources are
trusted, it is natural to have data sources run the monitors. In this
source-based monitoring architecture, SGX can be used to determine
which applications (running remotely at a service provider) are
authorized to use a given value. Assuming that sensitive values can
be processed only by a standard set of data analytics functions2,
a source-based monitor can distinguish between authorized and
unauthorized applications and, therefore, can enforce use-based
privacy in the presence of malicious service providers. Moreover,
with all policy enforcement performed at the data source, applica-
tion developers do not need to handle policies or explicitly interact
with policy mechanisms, and policy enforcement is compatible with
legacy applications.

3.1 Designing a Source-based Monitor
Applications run by a service provider are decomposed into an

2The popularity of common data analytics packages including Scipy and Scikit-learn
provides evidence in favor of this assumption. Nonetheless, if future work disproves
this assumption, the enforcement mechanisms discussed in this work will continue to
provide privacy guarantees in the presence of accountable service providers.

untrusted app—run natively—and zero or more enclave apps—run
inside SGX enclaves. Each app may issue requests ⟨r ,x , c⟩ to a data
source, where r is the type of request (e.g., GET values), x is a
reference to the requested data (required for requests that retrieve
values), and c is a set of credentials. Traditional authentication
tokens—e.g., OAuth tokens or signed statements—can attest to the
invoker type I and the purpose type P; we use SGX quotes as cre-
dentials for the executable type E, as described in Section 2.3. Upon
receiving a request, the monitor validates the request: it retrieves
the requested values (and their policy tags) from the data store and
then constructs a policy-compliant response. This architecture is
depicted in Figure 3a, and details (discussed below) are shown in
Figure 4.

To construct a privacy-compliant response to a request for data,
the monitor invokes an authentication layer to authenticate the re-
quest credentials and determine the use type—an authorization triple
(I,P, E)—for the application that issued the request. We consider
two possible approaches. In a prevention-based monitor, the authen-
tication layer compares the authenticated credentials to a whitelist
of known credentials in order to determine the use type. This results
in a monitor that enforces privacy compliance with malicious adver-
saries. Note that a prevention-based monitor is implicitly assumed
to know the functionality of all enclave apps (and their quotes) in
advance, and the pre-determined mapping between quotes and use
types is assumed to be error-free. In a detection-based monitor, the
authentication layer creates a log entry—including an identifier for
the service provider, the authenticated credentials, and the claimed
use type—and then accepts the claimed use type. Because a service
provider could lie about the use type, a detection-based monitor
does not guarantee privacy compliance by malicious adversaries.
Observe, however, that the audit log ensures that incorrect use
types can be detected after the fact, so a detection-based monitor
is sufficient to guarantee privacy compliance in the presence of
accountable adversaries.

After determining the use type, the monitor retrieves the re-
quested values (and their policy tags) from the data store. It then
invokes a authorization layer, which compares the use type to the
use-based privacy policy defined by the policy tags—which defines
authorized use types—and constructs a policy-compliant response.
The details of how this response is constructed are implementation-
specific and are discussed in Section 3.2.

Since use-based privacy expresses restrictions on how derived
values may be used, the monitor is also responsible for computing
derived policies and associating them with derived values. To do so,
the monitor maintains a taint store that maps applications to the
Avenance policy(s) of the values that that application has received.
Each time the monitor sends values to an application, it adds the
corresponding policies to the taint store entry for that application.
When the monitor receives a new value x from an application, it
first invokes the authentication layer to authenticate the request
credentials and determine the use type (I,P, E) and the application
identifier aid . It then looks up the policy(s) ρ associated with aid in
the taint store, invokes the transition triggered by the executable
type E(aid) to produce a derived policy ρ ′, constructs a tagged
value ⟨x , ρ ′⟩, and stores the new tagged value in the data store.

Monitor

Data
Store

Data Source

App

App

App

Service

Provider

(a) Source-based Monitoring

Authent.
Layer

Data
Store

Data Source

App App

Monitor

App

Service

Provider

(b) Delegated Monitoring

Authent.
Layer

Data
Store

Data Source

App &
Inline
Monitor

App

Service

Provider

(c) Inline Monitoring

Figure 3: An overview of the different architecture designs. The direction of each arrow indicates which principal instigates
communication between two components of the system. SGX enclaves are shown in gray; wide gray arrows indicate that a
program has authenticated using an SGX report (local attestation) or quote (remote attestation).

Authent. Layer

Author. Layer

Taint Store
aid 7→ ρ

Data Store
x 7→ ρ

Figure 4: Detailed design for a data source that implements
source-based monitoring.

3.2 Implementation of Source-based
Monitoring

We implemented a data source that instantiates source-based moni-
toring on an existing mobile health platform called Ohmage [35, 39].
Ohmage is an open-source system designed to facilitate distributed
data collection and analysis for health studies and applications—an
ideal candidate for use-based privacy. It has been used for dozens
of real-world studies and also serves as the backend for several pro-
duction applications. Ohmage is designed with a classic three-tiered
architecture comprising a back-end database, a server component
implemented in the Spring Boot framework [38], and a family of
front-end mobile applications. Our data source is implemented in
7634 lines of Java on top of the existing Ohmage server.

Data Store. The backend of Ohmage is a secure, Open mHealth-
compliant data store that can be accessed through an API. The data
store operates on datapoints, each comprised of header information
(id, schema, time, source) and a JSON-encoded body; datapoints
are classified by schema. The API allows operations for storing and

retrieving datapoints: GET datapoints/{id}, GET datapoints,
POST datapoints, and GET datapoints/scope. We extend the
Ohmage data store to store tagged values and enforce policy tags by
storing values as datapoints in Ohmage and storing tagged policies
in a local MySQL database.

Policy Association. Our implementation supports both discre-
tionary (data-subject defined) policies and mandatory (admin de-
fined) policies through a new POST policy API call, which allows
data subjects to modify the policy for their own datapoints and al-
lows admins to modify the mandatory policies applied to all stored
datapoints. The API has operations to modify the policy for a single
specified datapoint or update the set of preference rules—policies
that apply to all future incoming datapoints that match the specified
schema. Requests to store datapoints can also specify an existing
policy using the optional HTTP header AvPolicy.

Policy Granularity. Avenance policies could be associated with
atomic values (e.g., integers) or with structured values (e.g., health
records) under control of a single principal; policies could also be as-
sociated with aggregate objects containing information about many
different users. Our data source enforces policies at the granularity
of individual datapoints—in which case a request for multiple data-
points returns only the authorized datapoints—or at the granularity
of datasets—in which a request for multiple datapoints is authorized
only if all requested datapoints are authorized. The granularity can
be configured at runtime.

Policy Enforcement. To ensure privacy compliance, our data source
only accepts requests received over a TLS connection and accom-
panied by request credentials. Credentials might include an OAuth
token, a purpose label, and/or an SGX quote. OAuth credentials
are authenticated by the Ohmage authentication service and then
used to lookup the service provider identity spid—a unique iden-
tifier associated with an OAuth client secret. Purpose labels are
not authenticated; they are instead interpreted as credentials of
the form “U says P” for the user U defined by the OAuth token
and some purpose type P. SGX quotes are authenticated with the
Intel Attestation Service and then cached; the quote is also used to
define the application id aid . Finally, the data source determines

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200 1400 1600

La
te
nc
y
(m
il
li
se
co
nd
s)

Throughput (kbps)

Datapoint Granularity
Dataset Granularity

Figure 5: Latency and throughput of a data source with
source-based monitoring as a function of the number of
concurrent requests, ranging from 1 to 50 concurrent re-
quests. The solid black line shows performance when the
data source enforces datapoint-granularity policies and the
dashed blue line shows performance for dataset granularity.

the executable type: if configured for prevention-based enforce-
ment it compares the quote to a whitelist of trusted enclaves, if
configured for detection-based enforcement it accepts the claimed
enclave type after logging the request. The enforcement mode is
configured at runtime; if the mapping between credentials and use
types is not known in advance for all users and all applications, the
monitor should be configured for detection-based monitoring. The
data source then performs monitoring as described in Section 3.1.

3.3 Evaluating Source-based Monitoring
We deployed our data source with source-based monitoring on
Amazon EC2 T2.small instance with an Intel Xeon E5-2676 2.4 GHz
CPU and 2GB of memory running Ubuntu 14.04 LTS (kernel version
3.13.0).

To evaluate performance, we measured latency and through-
put of the data source responding to a GET datapoints/scope
request for 500 datapoints. We tested the performance as the data
source handled between 1 and 50 concurrent requests. As shown
in Figure 5, implementation choices—for example, whether poli-
cies were associated with values at the granularity of individual
datapoints or for the full dataset—did impact the performance. But
all implementations overloaded at a relatively low load (less than
50 simultaneous requests), after which throughput collapsed and
latency drastically increased.

We also measured the performance of source-based monitoring
for a common use case [5]: user preferences, privacy regulations,
and/or corporate privacy policies restrict uses for raw data but
allow derived values (e.g., anonymized values, encrypted values,
or aggregated values) to be used more liberally. One such policy is
depicted in Figure 1. A privacy-compliant service provider might
first request the raw data, generate the derived values, and then
use the derived values.

Figure 6: Performance of the PMSys averaging functionwith
source-based monitoring.

Data Source App Enclave App
Service Provider

1⃝ ⟨GET p, ca ⟩

2⃝ ⟨GET p, ca, ce ⟩

3⃝ v

4⃝ POST Avд (v)

5⃝ 201 CREATED

6⃝ GET avд

7⃝ Avд (v)

Figure 7: Protocol for the PMSys averaging function in a
source-based monitoring architecture.

To evaluate performance for this use case, we ported one such
application, called PMSys [32, 33], to run on the source-based mon-
itoring architecture. PMSys is a mobile and web-based application
developed jointly at Simula Research Laboratory and UIT The Arc-
tic University of Norway that performs physiological evaluation
and training-load personalization for soccer players. PMSys collects
data about player mood, sleep patterns, physical fitness, and injuries
and displays aggregate statistics (including average) to authorized
coaches. These data are subject to a contractually-defined privacy
policy negotiated with the players (who all are members of elite
clubs and national teams in Norway, Sweden, and Denmark) and
to relevant national and EU privacy laws that restrict data use and
data sharing.

We measured the end-to-end latency of the PMSys averaging
function on synthetic data matching the PMSys data collected for
one month.3 To eliminate network bottlenecks, we ran our data
source on a dedicated Amazon EC2 R4.large instance with an Intel
Xeon dual-core E5-2686 2.3 GHz CPU and 15GB of memory running
Ubuntu 14.04 LTS (kernel version 3.13.0). We deployed the applica-
tion on an OptiPlex 5040 with an SGX-enabled Intel Core i5-6500
3.20 GHz CPU and 16GB of memory running Ubuntu 14.04 LTS
(kernel version 4.4.0). As shown in Figure 6, this averaging function
3Using actual data from the production system would have been incompatible with
the existing terms of service and Norwegian data protection laws.

experiences 35-62% overhead compared to a baseline averaging
function with no policy enforcement. However, poor performance
is unsurprising given the number of round-trips required; as shown
in Figure 7, this averaging function requires three round trips to
the server in order to enable the source-based monitor to mediate
access to the derived (average) value. Note that for the experiments
with datapoint (DP) granularity, the overhead due to logging causes
detection-mode to be more expensive than enforcement mode—so
that design choice would be reasonable only in cases where pre-
determining the use type of some apps is infeasible. Dataset (DS)
granularity generates shorter log entries, reducing the overhead
for enclave exit and log writing and thereby rendering the perfor-
mance difference between detection-mode and enforcement-mode
negligible.

4 ENFORCEMENT BY DELEGATED
MONITORING

To mitigate the throughput bottleneck imposed by the monitor in
a source-based monitoring architecture, we turn to an alternative
design. In a delegated monitoring architecture, service providers
run the monitors in dedicated SGX enclaves, which enables each
monitor to authenticate itself to the data source. We assume that
there will only be a small number of implementations of delegated
monitors, so a data source can whitelist the credentials for dele-
gated monitors to ensure that tagged values are shared only with
valid instances of a delegated monitor. SGX is used here also to
locally determine which applications run by the service provider
are authorized to use values, and it is used to provide confidentiality
and integrity for tagged values handled by a delegated monitor. As
before, we assume that sensitive values can only be processed by
a standard set of data analytics functions, so a delegated monitor
can distinguish between authorized and unauthorized applications
and, therefore, can enforce use-based privacy in the presence of
malicious service providers.

A delegated monitoring architecture requires each service pro-
vider to run a monitor. Because each monitor is responsible for
mediating the requests from just one service provider, the delegated
monitoring architecture eliminates the performance bottleneck in-
curred by a source-based monitor. This architecture also offers
an opportunity to mitigate the second performance drawback of
source-based monitoring: the number of round-trips required for a
typical application. In the source-based architecture, it is necessary
to send all derived values to the data source, because the monitor
(run by the data source) needs to mediate all requests, including re-
quests for derived values. Because a delegated monitor is run locally
by a service provider, those round trips are no longer necessary.
Instead policies pertaining to derived values can be determined by
the local monitor, and derived tagged values can be cached locally
using SGX sealing. This design improves performance at the cost
of introducing a burden on application developers, who must now
handle tagged values and must modify any legacy applications.

4.1 Designing a Delegated Monitor
Delegated monitors run by a service provider act as a proxy for
untrusted applications: they issue requests to a data source and

Data Source Monitor App Enclave App

Service Provider

1⃝ ⟨r, x, ca ⟩

2⃝ ⟨r, x, cm ⟩

3⃝ ⟨v, ρ⟩

4⃝ Auth (v, ρ ; ca)

5⃝ ⟨m, ca, eid⟩

6⃝ ce .

7⃝ Auth (m; ca, ce)

8⃝m′

9⃝ Auth (m′; ca)

Figure 8: Example interactions with a delegated monitor.

they mediate messages to and from enclave applications. This ar-
chitecture is depicted in Figure 3b, and an example sequence of
interactions is depicted in Figure 8. The design of the delegated
monitor is the same as the source-based monitor design depicted
in Figure 4.

Delegated monitors accept requests ⟨r ,x , ca⟩ from untrusted ap-
plications, where r is the type of request (e.g., GET values), x is
a reference to the requested data (required for requests that re-
trieve values), ca is a set of invoker credentials (e.g., message 1⃝
in Figure 8). A monitor then replaces the credentials ca with a set
of monitor credentials cm and issues the modified request 2⃝ to a
data source in the form ⟨r ,x , cm⟩. Upon receiving the request, the
data source authentication layer checks the monitor credentials and
then issues a response 3⃝. After a monitor receives a response from
a data source, it mediates the response to enforce policy compliance.
If the response contains no tagged values (e.g., an acknowledgment),
then it forwards the response to the untrusted application. If the
response contains tagged values ⟨v, ρ⟩, then the monitor invokes an
authorization layer, which compares the use type of the untrusted
application (I,P,null)4—determined by the internal authentication
layer from the application credentials ca—to the use-based privacy
policy defined by the policy tags and constructs a policy-compliant
response 4⃝ Auth(v, ρ; ca). The details of how this response is con-
structed depend on the granularity of the policy tags returned by
the data source, but the monitor forwards authorized values to the
untrusted application in plaintext and encrypts all other values
using an SGX sealing key.5

Delegatedmonitors alsomediatemessages between untrusted ap-
plications and trusted applications. Communication is always initi-
ated by an untrusted application, which sends amessage ⟨m, ca , eid⟩
wherem is either a set of tagged values or sealed tagged values, ca
4Note that the use type cannot define an executable type because untrusted applications
do not run inside SGX enclaves and therefore cannot produce the necessary credential—
a quote—for an executable type E.
5This design eliminates unnecessary round-trips to the data source by caching en-
crypted copies of tagged values with any application that is not authorized to use
those values. This caching might violate a use-based privacy policy unless we interpret
policies as allowing encrypted copies of tagged values to be used by any principal in
any way. We consider such an interpretation consistent with existing user preferences
and legal requirements.

is a set of invoker credentials, and eid is an enclave application (e.g.,
message 5⃝ in Figure 8). The monitor authenticates the invoker
credentials to determine the invoker type I and purpose P, and then
authenticates the enclave application eid 6⃝ and determines the
executable type E. It then invokes the authorization layer, which
compares the use type (I,P, E) to the use-based privacy policy de-
fined by the (decrypted, if necessary) policy tags, constructs a policy
compliant message 7⃝ Auth(m; ca , ce) (using SGX sealing, if nec-
essary), and forwards the resulting message to enclave eid . It also
updates the taint store entry for eid to include the policies for any
tagged values sent to eid in plaintext. When the monitor receives a
response—a set of values 8⃝m′—it looks up the policy ρ associated
with eid in the taint store, invokes the transition triggered by the
executable type E to produce a derived policy ρ ′, and constructs
a new set of tagged values fromm′ and ρ ′. Finally, it invokes the
decision engine to determine whether ρ ′ authorizes the untrusted
application (I,P,null), constructs a policy compliant response 9⃝
Auth(m′; ca) (using SGX sealing, if necessary), and forwards that
response to the untrusted application.

4.2 Implementation of Delegated Monitoring
Data Source. We modified our data source to work in concert

with delegated monitoring. It retains the same data store and policy
association API as in the source-based monitoring architecture,
and it, too, can be configured to construct tagged values at either
datapoint granularity or dataset granularity.

Instead of mediating requests to enforce privacy compliance, the
modified data source uses an authentication layer to only accept
requests over TLS from delegated monitors. The data source au-
thentication layer authenticates credentials ⟨s1,q, e⟩ as describe in
Section 2.3 and determines the use type E using the same authenti-
cation mechanism—either prevention-based or detection-based—as
the source-based monitor in Section 3. If the requester successfully
authenticates as a delegated monitor—denoted by the executable
type E = policyrm—the data source returns the requested tagged
values.

Delegated Monitor. We implemented a delegated monitor in 1149
lines of C/C++ that runs as a dedicated SGX enclave. On initial-
ization, the monitor establishes its credentials ⟨s1,q, e⟩ for use in
remote program authentication, as described in Section 2.3: it re-
trieves an application secret (s1, s2) from the data source, generates
a quote q with message s2, and defines E = policyrm. All subse-
quent requests to the data source are sent over TLS using a version
of the mbedtls client ported to run inside an SGX enclave [42];
these request include the monitor credentials as a message header.

Policy Granularity. Like the source-based monitoring implemen-
tation, our implementation of delegated monitoring supports pol-
icy tags at two different granularities: individual datapoints and
datasets.

Policy Enforcement. For efficiency, our delegated monitor exclu-
sively implements prevention-based monitoring; it determines use
types (I,P, E) by comparing invoker and enclave credentials to a
whitelist of known types.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200 1400 1600

La
te
nc
y
(m
il
li
se
co
nd
s)

Throughput (kbps)

Datapoint Granularity
Dataset Granularity

Figure 9: Latency and throughput of a data source with
client-sidemonitoring (delegatedmonitoring or inlinemon-
itoring).

Figure 10: Performance of the PMSys averaging function
with delegated monitoring.

4.3 Evaluating Delegated Monitoring
We deployed our data source with delegated monitoring on the
same Amazon EC2 instances and the same local client that we used
to evaluate source-based monitoring.

We evaluated the performance of the data source in the delegated
monitoring architecture by reproducing the latency and through-
put experiment we ran for the source-based monitoring architec-
ture. The simplified authentication layer run by the data source
eliminates the throughput bottleneck incurred by a source-based
monitor; this improved performance is evident for both datapoint
granularity and dataset granularity (Figure 9). Observe that imple-
menting policy association at the granularity of datasets results in
a moderate increase in throughput and a significant decrease in
latency, as compared to the datapoint-granularity implementation.

To evaluate the performance of the delegated monitor for the
common aggregate-then-use case, we ported the PMSys application—
which requests values, computes the average in an SGX enclave,
and then uses the average in an untrusted application—to run in
the delegated monitoring architecture. The reduced number of

(a) Datapoint granularity (b) Dataset granualarity

Figure 11: Breakdown of the latency of the PMSys averaging function with delegated monitoring.

round trips significantly improves the performance of the averaging
function, as compared to the source-based monitoring architecture
(Figure 10); there is a 3% overhead for dataset-granularity and the
overhead is cut in half for datapoint-granularity enforcement. Sig-
nificant components of the remaining overhead are due to the cost
of sealing cached values (Figure 11). The majority of the latency is
due to enclave initialization, SSL negotiation, and fetching the raw
data; these costs are fixed. The majority of the remaining latency
can be attributed to the cost of enforcing policy compliance when
caching raw data with the untrusted application (which requires
sealing the data) and when transferring cached, raw data to the
averaging enclave (which requires unsealing the data). This cost is
likely to increase for applications that handle more data (much of
the difference in latency between datapoint and dataset mode is due
to the increase space required to store policies at the granularity of
individual datapoints).

5 INLINE MONITORING
To eliminate the latency overhead imposed by sealing cached tagged
values, we propose yet a third design. In an inline monitoring ar-
chitecture, the service provider performs monitoring inline with a
monitored application. The inline monitor provides an API of moni-
tor calls, and each service provider augments their application code
with appropriate calls to that API. The inline architecture enables
applications to process tagged values within a single enclave, elimi-
nating the need to seal cached values, but it introduces a significant
burden on application developers, who must now instrument their
code with monitor calls.

To ensure policy compliance, a data source must send tagged
values only to correctly-inlined applications running inside SGX en-
claves. With many correctly-inlined applications, a data source can-
not be expected to maintain a database identifying all. Prevention-
based monitoring—in which the data source authentication layer
maintains a whitelist of authorized enclaves—is therefore infea-
sible.6 Instead, we focus on detection-based monitoring, and we
6The preceding architectures do not have this constraint. In either a source-based
monitoring architecture or a delegated monitoring architecture, all service providers
might use a common set of data analysis enclave applications to manipulate tagged

design and implement an inline monitor that will ensure privacy
compliance by accountable service providers. Note that this design
effectively places trust in application developers; incorrect annota-
tions due to developer errors might result in policy violations that
will only be detected after the fact.

5.1 Designing an Inline Monitor
An inline monitor should handle policies for tagged values, and
it should provide an API with calls for storing polices, enforcing
policies, and generating policies for derived values. We therefore
designed an inline monitoring library that enables service providers
to add policy monitoring code to existing enclave applications.

On initialization, the monitor creates a policy store, which stores
tagged values; tagged values can subsequently be added to or
deleted from the policy store. The monitor automatically computes
policies for derived values based on program annotations, which
label the executable type E of the function that generates the de-
rived value, and adds derived tagged values to the policy store.
Observe that there is no authentication of the executable type E;
however, an application is only considered to be correctly-inlined if
all derivation functions are annotated with the correct executable
type E.

The inline monitor provides monitor calls that should be used to
label sections of code that implement particular executable types
and annotations that should be invoked when tagged values are
used. When a tagged value is used, the inline monitor enforces
the associated policy; the details are implementation-specific, but
might use either prevention-based or detection-based enforcement.
Again, there is no assurance that these labels are correct, but an
application is only considered to be correctly-inlined if all uses are
correctly labeled.

To use the inline monitor, a service provider adds monitor calls
to their application code. Correctly-monitored code must initialize
the monitor, must add all tagged values to the policy store, must

values; in a delegated monitoring architecture, the data source must also authenticate
the delegated monitor, but each service provider runs an instance of the same (or one
of a small number of) monitor enclave, so prevention-based enforcement is a feasible
option.

polstore * init_polstore(intm, char *l) Initialize a polstore with enforcement modem and logfile name
l .

int store_policy(polstore *s , void *v , char *p) Create a polstore entry in s for the value at location v and
associate it with policy serialized as p.

pol * retrieve_policy(polstore *s , void *v) Return the policy from s associated with the value at location
v .

int delete_policy(polstore *s , void *v) Delete the entry associated with v from polstore s .
int check_policy(polstore *s , void *v , char *i , char *p, char *e) Return a boolean indicating whether the use (i,p, e) is currently

permitted by the policy associated with v .
void change_use(polstore *s , char *i , char *p, char *e , int b) Add (if b = 1) or remove (if b = 0) use type (i,p, e) from the set

of current uses for polstore s .
void *use(polstore *s , void *v) Use the value v for the current use(s) defined in polstore s .
int trans(polstore *s , char *i , char *p, char *t , int n, void *ins[],
void *o)

Use the n values ins[] for use (i,p, t), where t is a transitions
type, and associated the derived policy with the output stored
in o.

Figure 12: Monitoring API for our inline monitor implementation.

correctly label all sections of code according to their use type, and
must label all uses of tagged values. To receive values from a data
source, an applicationmust perform remote program authentication
and must provide credentials that authenticate the service provider.
The data source authentication layer is identical to that used in the
delegated monitoring architecture when configured for detection-
based monitoring: it authenticates the credentials, creates a new
log entry, and then returns the requested tagged values.

5.2 An Implementation of Inline Monitoring
We implemented an inline monitor as a C library in 2701 lines of
code; it can be compiled to run inside SGX enclaves. The full API
supported by our implementation is given in Figure 12.

Inline Monitor. The inline monitor implements the policy store
as an in-memory list; it uses the memory address as an identifier
for a value and maps addresses to policies. Tagged values can be
added or removed from the policy store using API calls store_policy
and remove_policy. Derived values should be added to the policy
store using the transition call trans, which automatically defines
the derived policy based on the declared inputs and synthesis event
and which associates the derived policy with the derived value in
the policy store.

When a tagged value is used, that use should be accompanied
with a monitor call use that will enforce privacy compliance. This
enforcement can be prevention-based or detection-based; details
are discussed below. Authorization decisions are determined by
the current set of use types. Uses are labeled using change_use to
mark the beginning and end of code segments that implement a
particular use and use use to indicate when particular tagged values
are used.

The inline monitor also includes a check_policy call; a policy-
compliant application that uses the inline monitor in prevention
mode should call check_policy immediately prior to any call to use
and only proceed if the use is authorized.

To write a new log entry, the monitor encrypts the log entry
using SGX sealing and then exits the application enclave to write
the encrypted entry to the logfile.

Policy Granularity. Our inline monitor can be deployed to en-
force privacy compliance at any level of granularity. The application
developer may choose what granularity to add tagged values to the
policy store.

Policy Enforcement. An inline monitor can either prevent unau-
thorized uses—using the program annotations as use types—or
simply log all interactions with the monitor; our implementation
supports both and can be configured using a compiler flag. Since
the data source implements detection-based monitoring, this is an
implementation choice that can be configured for performance op-
timization or to minimize programmer burden; it has no effect on
the privacy guarantees provided.

When the monitor is configured with logging, it generates a
secure audit log that contains a record for each invocation of a
monitor call that affects the state of the monitor—store_policy,
delete_policy, trans, and change_use—and each time enforcement
occurs—each invocation of use. A record contains the monitor call,
the arguments to the monitor call, and a record id (a counter that
is increased with each record). Each entry is encrypted using SGX
sealing and then written to a logfile stored in the local file system.
Log records cannot be modified because SGX sealing ensures in-
tegrity, and the counter ensures that log records cannot be deleted.
Note that an auditor uses the application to retrieve (and unseal) the
audit log—the correctness of this function is ensured because the
data source logs the application quote—and the retrieval function
includes the current counter value, so truncations of the audit log
can also be detected.

5.3 Evaluating Inline Monitoring
The inlined applications are compatible with the data source imple-
mented for delegated monitoring, so the data source exhibits the
same performance shown in Figure 9.

To evaluate the performance of the inlinemonitor, we ran a series
of microbenchmarks that evaluate the costs of various library calls.
These results are shown in Figure 13. We find that the detection-
based implementation has higher latency due to the additional cost
of encrypting log entries with SGX sealing, exiting the enclave,

Figure 13: Performance of inline monitoring library calls.
Results with logging are in dark gray; results with
prevention-based enforcement are in light gray.

Figure 14: Performance of the PMSys averaging function
with inline monitoring.

and writing the log entries to the logfile. Note that the delegated
monitor and the inline monitor use the same implementation of
common functions—e.g., computing policies for derived values—to
facilitate comparison.

To evaluate the performance of the inline monitor for the com-
mon aggregate-then-use case, we ported the PMSys application—
which requests values, computes the average in an SGX enclave,
and then uses the average in an untrusted application—to run in the
inline monitoring architecture in prevention mode. As shown in
Figure 14, inline monitoring is within the error margin of the base-
line system for dataset-granularity enforcement—small differences
are due to various uncontrollable sources of variance introduced
by Amazon EC2 instances—and it offers significantly improved per-
formance (14% overhead) with datapoint granularity. However, this
performance comes at the cost of increase the burden on application
developers and attenuated privacy guarantees.

6 RELATEDWORK
Use-based Privacy. Use-based privacy was first introduced by

Cate [7] as a solution to the shortcomings of “notice and consent”
and the underlying guidelines—the Fair Information Practice Princi-
ples [9]—which defined acceptable standards for handling sensitive

data. Observing that users rarely make use of either opt-ins or opt-
outs and typically don’t make informed decisions about access to
their data, Cate proposed a new approach. His work explored the
legal and philosophical implications of use-based privacy; the feasi-
bility of a technical regime for expressing or enforcing use-based
privacy was not addressed.

The Avenance policy language [5] expresses use-based privacy
as summarized in Section 2.2. Previous implementations of the
Avenance language [3, 4] provide detection-based enforcement, but
those privacy guarantees depend on trusting service providers to
deploy the enforcement mechanism.

Alternate Privacy Regimes. Many systems have been developed
with the goal of expressing and enforcing privacy. However, none
were intended to enforce use-based privacy. Alternate approaches
either focus exclusively on private information transmission rather
than controlling usage as information flows through a networked
information system (e.g., [14, 27, 29, 31]) or fail to exhibit all key
attributes required for use-based privacy (e.g., [15, 37]).

Contextual Integrity [27] is a philosophical approach to privacy
that has been formalized as a logic for reasoning about privacy [1].
Because contextual integrity defines privacy relative to socially-
determined informational norms, contextual integrity can be in-
terpreted as a special case of use-based privacy that focuses on
data collection and data sharing. Transmissions are authorized
when they occur in an appropriate context, as determined by social
norms. The emphasis on a societal determination of acceptable or
non-harmful uses (rather than informed consent or data minimiza-
tion) is closely aligned with the philosophy of use-based privacy.
However, the exclusive focus on data transmission, and the lack of
restrictions on derived values, render existing enforcement mecha-
nisms inapplicable for use-based privacy.

Differential privacy [14] classifies a response to a database query
as a privacy violation unless the algorithm used to generate the
response satisfies a specific statistical property (viz., ε-differential
privacy). This definition has been formalized and implemented as
an extensible platform for privacy-preserving data analysis [24].
However, differential privacy, like contextual integrity, focuses ex-
clusively on defining authorized transmissions. This approach does
not support general policy synthesis for derived values, and it does
not include environmental events, sticky policies, or obligations.
So like contextual integrity, mechanisms for enforcing differential
privacy cannot be used to enforce use-based privacy.

Datta et al. [12] propose an alternative approach termed use
privacy, which restricts the use of protected information types and
their proxies—correlated and causally related data types. Although
there is no support for reactive policies, the restrictions on proxy
use fulfill a similar role in limiting how information (not just values)
can be uses. Their work develops an algorithm for detecting proxy
use in data-driven systems (e.g., machine learning systems) and for
eliminating “inappropriate” proxy uses. Although general use-based
privacy policies are beyond the scope of this work, their approach
effectively restricts information use by a single centralized system.

Note that it is tricky to compare the performance of mechanisms
that are intended to achieve different goals. Therefore, we have not
undertaken comparisons of our architectures with implementations
of these alternate privacy regimes.

Use-based Authorization Regimes. Several existing projects define
languages for expressing restrictions on how data are used, and can
therefore be viewed as partially implementing the requirements of
use-based privacy. However, none of these regimes fully support
use-based privacy, and none implement policy enforcement in a
distributed system with adversarial service providers.

Usage Control (UCON) [29, 30] is an extension of traditional
access control models (e.g., discretionary access control, mandatory
access control, role-based access control) that enables continuity of
access decisions. Here access control decisions are re-evaluated after
the context (e.g., subject roles, time, number of previous accesses)
changes. UCON was a reaction to increased networking and data
sharing within a diverse ecosystem of devices, and it can be viewed
as the first technical approach to use-based authorizations. Initial
UCON systems enforced policies on a single system; later versions
introduced distributed usage control [6, 16, 34], but assumed that
all systems were run by trusted principals.

An alternative approach was outlined by Petković et al. [31],
who consider a restricted form of use-based privacy, which they
call purpose control. Their work creates an audit log of service
provider actions and then detects policy violations by checking
whether the audit trail is a valid execution of the organizational
process—modeled as a formula in the Calculus of Orchestration of
Web Services (COWS)—for a permitted purpose. This work does
not consider prevention-based enforcement or enforcement in the
presence of adversarial service providers.

Legalease [37] is a privacy policy language that implicitly sup-
ports policies encoded as domain-specific attributes. For example,
a Legalease policy might say, “DENY DataType IP Address, UseFor-
Purpose Advertising EXCEPTALLOWDataType IPAddress:Truncated”,
which asserts that the full IP address may not be used for adver-
tising. Many use-based policies can be encoded in Legalease by
defining appropriate attributes. Legalese is deployed in Grok, a pol-
icy compliance system for Bing that automatically maps code-level
elements to attributes and enforces policies using compile-time
information flow analysis. However, Grok assumes that the entire
system is under the control of a single, trusted principal.

The Thoth policy language [15] specifies data use policies com-
prising confidentiality, integrity, and declassification policies, each
defining principals that are authorized and under what conditions.
Although policies are designed to be expressed at a lower level than
under our approach, Thoth’s conditions are sufficiently flexible to
capture policies that depend on who, what, or why as well as tem-
poral, discretionary, autocratic, and jurisdictional policies. Thoth
is implemented as a kernel-level compliance layer for enforcing
data use policies in data retrieval systems, but it assumes that the
enforcement layer is deployed by a trusted principal.

Lonet [18] is a system for expressing and enforcing security
policies for shared data using isolated containers. Lonet policies—
which are associated with data files and defined as metadata—are
expressed as automata; states specify the set of authorized users
and declare event-driven obligatory meta-code, and state transi-
tions specify how to derive policies for derived values depending on
the type of program that produces the derived value. Lonet imple-
ments a reference monitor that enforces these policies, but security
depends on trusting service providers to deploy the enforcement
mechanism.

Policy Enforcement with SGX. SGX offers a new basis for plac-
ing trust in a monitor or other program, so it is a natural tool for
enabling policy enforcement in distributed systems where service
providers are operated by untrusted principals. Several previous
projects have explored related ideas, but, to the best of our knowl-
edge, there are no prior systems that use SGX to guarantee privacy.

Haven [2] uses SGX to create a shielded execution environment,
allowing unmodified Windows application binaries to be hosted
inside SGX enabled enclaves. Applications then interface with a
library version of the Windows operating system running entirely
inside the enclave, reducing the dependencies on the underlying
system. Moreover, Haven implements a shielding module for in-
terfacing with components outside of the enclave, which provides
access to, among other things, an encrypted and integrity protected
file system. While the design of Haven places the entire OS inside
an enclave—allowing for applications to be securely monitored by
existing enforcement mechanisms—our approach yields a smaller
trusted computing base. Our work also supports privacy enforce-
ment in distributed systems.

VC3 [36] is a system for trustworthy data analytics in the cloud;
it is a MapReduce framework that uses SGX to protect sensitive
data. VC3 enforces confidentiality and integrity for code and data,
and it enforces verifiability of code execution; it does not support
enforcement for high-level policies or for use-based privacy.

Ryoan [17] is a distributed sandbox for performing computations
on sensitive data. Ryoan uses SGX enclaves to protect data confi-
dentiality and integrity from malicious service providers; it does
not support enforcement for high-level policies or for use-based
privacy.

Glamdring [21] is a framework for enforcing data confidential-
ity by automatically partitioning applications into untrusted and
enclave apps and adding runtime monitoring. Although the pol-
icy language is limited—data is either secret or public—Glamdring
requires only a small number of manual annotations (sensitive la-
bels on data), thereby minimizing developer burden and facilitating
deployment.

7 CONCLUSION
Use-based privacy offers an appealing approach to enhancing pri-
vacy in distributed systems that require data sharing. But successful
enforcement depends on a trustworthy monitor and having a basis
for trust in applications. In this work, we investigate the feasibility
of using Intel SGX as a root of trust to enforce such policies in the
presence of an active adversary. The natural, source-based moni-
toring architecture enables privacy enforcement against malicious
adversaries with minimal effort for application developers, but it
brings significant performance overhead. So we explore two alter-
native architectures—delegated monitoring and inline monitoring—
that offer improved performance and that demonstrate a trade-off
between deployability, performance, and privacy. We find that a
delegated monitoring architecture provides the best performance
for enforcing privacy against malicious adversaries, but that an in-
line monitoring architecture provides performance improvements—
particularly for applications that handle more data or require finer-
grained policies—with attenuated privacy guarantees. Given the

Architecture Privacy Guarantees Performance Deployability
Source-based malicious adversaries (✓) poor (-) no programmer burden (✓)
Delegated malicious adversaries (✓) moderate (∼) some policy handling (∼)
Inline accountable adversaries (∼) good (✓) significant annotations (-)

Figure 15: Tradeoffs between different monitoring architectures. ✓indicates goals that are fully met , ∼ indicates goals that
are partially met, − indicates the architecture failed goals.

trade-offs between deployability, performance, and privacy (sum-
marized in Figure 15), we believe that the appropriate architecture
will depend on the type of application. However, we view our re-
sults as positive evidence of the feasibility of enforcing use-based
privacy policies in a decentralized, adversarial ecosystem.

REFERENCES
[1] Adam Barth, Anupam Datta, John C. Mitchell, and Helen Nissenbaum. Privacy

and contextual integrity: Framework and applications. In IEEE Symposium on
Security and Privacy, pages 184–198, 2006.

[2] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications
from an untrusted cloud with haven. In Proceedings of the 11th USENIX confer-
ence on Operating Systems Design and Implementation, pages 267–283. USENIX
Association, 2014.

[3] Eleanor Birrell. Avenance middleware. https://bitbucket.org/cornell-ebirrell/
av-middleware, 2018.

[4] Eleanor Birrell. Avenance package. https://bitbucket.org/cornell-ebirrell/
pol-server, 2018.

[5] Eleanor Birrell and Fred B. Schneider. A reactive approach to use-based privacy.
Technical Report 54843, Cornell University, Computing and Information Science,
November 2017.

[6] Laurent Bussard, Gregory Neven, and F.-S. Preiss. Downstream usage control.
In IEEE Internation Symposium on Policies for Distributed Systems and Networks
(POLICY), pages 22–29, 2010.

[7] Fred Cate. Principles for protecting privacy. Cato Journal, 22:33–57, 2002.
[8] Fred Cate, Peter Cullen, and Viktor Mayer-Schönberger. Data protection princi-

ples for the 21st century. Oxford Internet Institute, 2013.
[9] Federal Trade Commission et al. Fair information practice principles. last modified

June, 25, 2007.
[10] Intel Corp. Intel software guard extensions (Intel SGX). https://software.intel.

com/sites/default/files/332680-002.pdf, June 2015.
[11] Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall,

and Joseph Reagle. The platform for privacy preferences 1.0 (P3P 1. 0) specifica-
tion. W3C recommendation, 16, 2002.

[12] Anupam Datta, Matthew Fredrikson, Gihyuk Ko, Piotr Mardziel, and Shayak
Sen. Use privacy in data-driven systems: Theory and experiments with machine
learnt programs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1193–1210. ACM, 2017.

[13] Dorothy E. Denning. A lattice model of secure information flow. Communications
of the ACM, 19(5):236–243, 1976.

[14] Cynthia Dwork. Differential privacy. In 33rd International Colloquium on Au-
tomata, Languages and Programming, part II (ICALP), volume 4052, pages 1–12,
Venice, Italy, July 2006. Springer Verlag.

[15] Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and
Peter Druschel. Thoth: Comprehensive policy compliance in data retrieval
systems. In USENIX Security Symposium, pages 637–654, 2016.

[16] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A policy language
for distributed usage control. In Joachim Biskup and Javier López, editors, 12th
European Symposium On Research In Computer Security (ESORICS), volume 4734
of Lecture Notes in Computer Science, pages 531–546, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[17] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel.
Ryoan: A distributed sandbox for untrusted computation on secret data. In OSDI,
pages 533–549, 2016.

[18] Håvard D Johansen, Eleanor Birrell, Robbert Van Renesse, Fred B. Schneider,
Magnus Stenhaug, and Dag Johansen. Enforcing privacy policies with meta-code.
In Proceedings of the 6th Asia-Pacific Workshop on Systems, 2015.

[19] Elisavet Kozyri, Owen Arden, Andrew C. Myers, and Fred B. Schneider. JRIF:
Reactive information flow control for Java. Technical Report 41194, Cornell
University, Computing and Information Science, February 2016.

[20] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. Inferring fine-grained control flow inside SGX enclaves with branch
shadowing. In 26th USENIX Security Symposium (USENIX Security 17), pages

557–574, Vancouver, BC, 2017. USENIX Association.
[21] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis

Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, Christof Fetzer, and Peter Pietzuch. Glamdring: Automatic application
partitioning for intel SGX. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 285–298, Santa Clara, CA, 2017. USENIX Association.

[22] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, and Sumit Shah.
First experiences using XACML for access control in distributed systems. In
Proceedings of the 2003 ACM workshop on XML security, pages 25–37. ACM, 2003.

[23] Petros Maniatis, Devdatta Akhawe, Kevin Fall, Elaine Shi, Stephen McCamant,
and Dawn Song. Do you know where your data are? Secure data capsules for
deployable data protection. In Proceedings of the 13th USENIX Conference on Hot
Topics in Operating Systems, 2011.

[24] Frank McSherry. Privacy integrated queries: An extensible platform for privacy-
preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, pages 19–30. ACM, 2009.

[25] Marco Casassa Mont, Siani Pearson, and Pete Bramhall. Towards accountable
management of identity and privacy: Sticky policies and enforceable tracing
services. In Proceedings of the 14th IEEE International Workshop on Database and
Expert Systems Applications, pages 377–382, 2003.

[26] CraigMundie. Privacy pragmatism: Focus on data use, not data collection. Foreign
Aff., 93:28, 2014.

[27] Helen Nissenbaum. Privacy in Context: Technology, Policy, and the Integrity of
Social Life. Stanford University Press, 2009.

[28] Helen Nissenbaum. A contextual approach to privacy online. Daedalus, 140(4):32–
48, 2011.

[29] Jaehong Park and Ravi Sandhu. Towards usage control models: Beyond traditional
access control. In Proceedings of the Seventh ACM Symposium on Access Control
Models and Technologies, SACMAT ’02, pages 57–64, 2002.

[30] Jaehong Park and Ravi Sandhu. The UCONABC usage control model. ACM
Trans. Inf. Syst. Secur., 7(1):128–174, February 2004.

[31] Milan Petkovic, Davide Prandi, and Nicola Zannone. Purpose control: Did you
process the data for the intended purpose? Secure Data Management, 6933:145–
168, 2011.

[32] Svein A. Pettersen, HÃěvard D. Johansen, Ivan A. M. Baptista, PÃěl Halvorsen,
and Dag Johansen. Quantified soccer using positional data: A case study. Frontiers
in Physiology, 9:866, 2018.

[33] PMSys. http://forzasys.com/pmsys.html.
[34] Alexander Pretschner, Manuel Hilty, and David Basin. Distributed usage control.

Communications of the ACM, 49(9):39–44, 2006.
[35] N. Ramanathan, F. Alquaddoomi, H. Falaki, D. George, C. K. Hsieh, J. Jenkins,

C. Ketcham, B. Longstaff, J. Ooms, J. Selsky, H. Tangmunarunkit, and D. Estrin.
Ohmage: An open mobile system for activity and experience sampling. In 2012
6th International Conference on Pervasive Computing Technologies for Healthcare
(PervasiveHealth) and Workshops, pages 203–204, May 2012.

[36] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data ana-
lytics in the cloud using SGX. In Security and Privacy (SP), 2015 IEEE Symposium
on, pages 38–54. IEEE, 2015.

[37] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Rajamani, Janice Tsai, and
Jeannette M. Wing. Bootstrapping privacy compliance in big data systems. In
Proceedings of the 35th IEEE Symposium on Security and Privacy (Oakland), 2014.

[38] Spring. Spring boot framework. https://projects.spring.io/spring-boot/, Decem-
ber 2017.

[39] Hongsuda Tangmunarunkit, Cheng-Kang Hsieh, Brent Longstaff, S Nolen, John
Jenkins, Cameron Ketcham, Joshua Selsky, Faisal Alquaddoomi, Dony George,
Jinha Kang, et al. Ohmage: A general and extensible end-to-end participatory
sensing platform. ACM Transactions on Intelligent Systems and Technology (TIST),
6(3):38, 2015.

[40] Jennifer Widom. Trio: A system for integrated management of data, accuracy,
and lineage. Technical report, Stanford InfoLab, 2004.

[41] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In Security and
Privacy (SP), 2015 IEEE Symposium on, pages 640–656. IEEE, 2015.

[42] Fan Zhang. mbedtls-SGX. https://github.com/bl4ck5un/mbedtls-SGX.

https://bitbucket.org/cornell-ebirrell/av-middleware
https://bitbucket.org/cornell-ebirrell/av-middleware
https://bitbucket.org/cornell-ebirrell/pol-server
https://bitbucket.org/cornell-ebirrell/pol-server
https://software.intel.com/sites/default/ files/332680-002.pdf
https://software.intel.com/sites/default/ files/332680-002.pdf
http://forzasys.com/pmsys.html
https://projects.spring.io/spring-boot/
https://github.com/bl4ck5un/mbedtls-SGX

	Abstract
	1 Introduction
	2 Background
	2.1 Threat Models
	2.2 Policy Language
	2.3 Intel SGX

	3 Enforcement by Source-based Monitoring
	3.1 Designing a Source-based Monitor
	3.2 Implementation of Source-based Monitoring
	3.3 Evaluating Source-based Monitoring

	4 Enforcement by Delegated Monitoring
	4.1 Designing a Delegated Monitor
	4.2 Implementation of Delegated Monitoring
	4.3 Evaluating Delegated Monitoring

	5 Inline Monitoring
	5.1 Designing an Inline Monitor
	5.2 An Implementation of Inline Monitoring
	5.3 Evaluating Inline Monitoring

	6 Related Work
	7 Conclusion
	References

