Composition of Zero-Knowledge Proofs with Efficient Provers

Eleanor Birrell Salil Vadhan

Cornell University Harvard University

February 11, 2010

(4) 3 (4) 4 (3)

Overview of Results

Sequential P-Uniform ZK Sequential V-Uniform ZK Conclusion

Motivation

• Reducing Error

Overview of Results

Sequential P-Uniform ZK Sequential V-Uniform ZK Conclusion

Motivation

- Reducing Error
- Networked Environments

Overview of Results

Sequential P-Uniform ZK Sequential V-Uniform ZK Conclusion

Motivation

- Reducing Error
- Networked Environments
- Composibility is subtle definitions matter (e.g., Efficient Provers)

(4) (3) (4) (4) (4)

Defining Zero Knowledge

Auxiliary-input ZK

Defining Zero Knowledge

Auxiliary-input ZK

Plain ZK [GMR] • Nonuniform ZK: D(t, z')

∃ **>** - ∢

Defining Zero Knowledge

Auxiliary-input ZK

Plain ZK [GMR]

- Nonuniform ZK: D(t, z')
- *P*-uniform ZK: D(t, x, y)

∃ **>** - ∢

Defining Zero Knowledge

Auxiliary-input ZK

Plain ZK [GMR]

- Nonuniform ZK: D(t, z')
- *P*-uniform ZK: D(t, x, y)

▲□► ▲ □► ▲

• V-uniform ZK: D(t, x)

Composition

• Sequential Composition:

• Parallel Composition:

Sequential Composition: Previous Results

• Goldreich-Krawczyk '90: Nonuniform Plain ZK is not 2-composable.

Sequential Composition: Previous Results

- Goldreich-Krawczyk '90: Nonuniform Plain ZK is not 2-composable.
- Goldreich-Oren '94: Auxiliary-input ZK is closed under polynomial composition.

A B K A B K

Sequential Composition: Previous Results

Sequential Composition of Plain ZK:

	P-/Non-uniform ZK	V-Uniform ZK
Efficient Prover	??	??
Unbounded Prover	Not 2-comp [GK]	Not 2-comp [GK]

Efficient = P poly-time given input x and witness y

Sequential Composition: Our Results

Sequential Composition of Plain ZK:

	P-/Non-uniform ZK	V-Uniform ZK
Efficient Prover	O(1)-comp	
Unbounded Prover	Not 2-comp [GK]	Not 2-comp [GK]

Efficient = P poly-time given input x and witness y

Sequential Composition: Our Results

Sequential Composition of Plain ZK:

	P-/Non-uniform ZK	V-Uniform ZK
Efficient Prover	O(1)-comp	Not 2-comp
Unbounded Prover	Not 2-comp [GK]	Not 2-comp [GK]

Efficient = P poly-time given input x and witness y

Parallel Composition: Previous Results

 Feige-Shamir '90: DL hard ⇒ Efficient-prover auxiliary-input ZK is not 2-composable in parallel.

4 B K 4 B

Parallel Composition: Previous Results

- Feige-Shamir '90: DL hard ⇒ Efficient-prover auxiliary-input ZK is not 2-composable in parallel.
- Feige-Shamir '90: $\mathcal{UP} \not\subseteq \mathcal{BPP}$ and OWF \Rightarrow Efficient-prover auxiliary-input ZK is not 2-composable in parallel.

Parallel Composition: Previous Results

- Feige-Shamir '90: DL hard ⇒ Efficient-prover auxiliary-input ZK is not 2-composable in parallel.
- Feige-Shamir '90: $\mathcal{UP} \not\subseteq \mathcal{BPP}$ and OWF \Rightarrow Efficient-prover auxiliary-input ZK is not 2-composable in parallel.
- Goldriech-Krawczyk '90: Unbounded-prover auxiliary-input ZK is not 2-composable in parallel.

Parallel Composition: Previous Results

Parallel Composition of Auxiliary-input ZK:

	Auxiliary-input ZK
Efficient Prover	$DL \Rightarrow not 2\text{-comp [FS]}$
	$\mathcal{UP} \nsubseteq \mathcal{BPP} + \mathrm{OWF} \Rightarrow \mathrm{not} \ 2\text{-comp} \ [\mathrm{FS}]$
Unbounded Prover	Not 2-comp [GK]

3.5 4.3

Parallel Composition: Our Results

Parallel Composition of Auxiliary-input ZK:

	Auxiliary-input ZK
Efficient Prover	$DL \Rightarrow not 2\text{-comp [FS]}$
	$\mathcal{UP} \nsubseteq \mathcal{BPP} + \text{OWF} \Rightarrow \text{not } 2\text{-comp } [\text{FS}]$
	key agreement [*] \Rightarrow not 2-comp
Unbounded Prover	Not 2-comp [GK]

(4) 3 (4) 4 (3)

Nonuniform (resp. P-Uniform) Sequential Result

	P-/Non-uniform ZK	V-Uniform ZK
Efficient Prover	O(1)-comp	Not 2-comp
Unbounded Prover	Not 2-comp [GK]	Not 2-comp [GK]

Theorem

Efficient-prover P-uniform plain ZK is closed under O(1)-sequential composition.

(4) (3) (4) (4) (4)

Proof of Nonuniform (resp. *P*-Uniform) Result

Proof of Nonuniform (resp. *P*-Uniform) Result

(*) *) *) *)

Proof of Nonuniform (resp. P-Uniform) Result

A B K A B K

Proof of Nonuniform (resp. *P*-Uniform) Result

Proof of Nonuniform (resp. *P*-Uniform) Result

A B K A B K

Proof of Nonuniform (resp. *P*-Uniform) Result

 $D(x, y, t_k)$

- - E

Proof of Nonuniform (resp. *P*-Uniform) Result

 $D(x, y, t_k) \qquad D'(x, y, t_{k-1}) = D(x, y, f(x, y, t_{k-1}))$

4 B K 4 B K

V-Uniform Sequential Result

	P-/Non-uniform ZK	V-Uniform ZK
Efficient Prover	O(1)-comp	Not 2-comp
Unbounded Prover	Not 2-comp [GK]	Not 2-comp [GK]

Theorem

Efficient-prover V-uniform plain ZK is not 2-composable.

(4) (3) (4) (4) (4)

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

Definition (Evasive Pseudorandom Ensemble)

 S_1, S_2, \ldots

•
$$S_m \subseteq \{0,1\}^m$$

•
$$S_m \stackrel{c}{\equiv} U_m$$

• hard to generate elements of S_m .

(4) (3) (4) (4) (4)

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

• Single protocol:

Step	P(x)	V(x)
1	$\stackrel{s}{\leftarrow}$	$s \in_R \{0, 1\}^{4n}$

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

• Single protocol:

Step
$$P(x)$$
 $V(x)$
1 $\stackrel{s}{\leftarrow} s \in_R \{0,1\}^{4n}$
2 if $s \in S_{4n} : c = K(x)$
else $c \in_R S_{4n}$ $\stackrel{c}{\rightarrow}$

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

• Single protocol:

Step
$$P(x)$$
 $V(x)$
1 $\stackrel{s}{\leftarrow} s \in_R \{0,1\}^{4n}$
2 if $s \in S_{4n} : c = K(x)$
else $c \in_R S_{4n}$ $\stackrel{c}{\rightarrow}$

2 Sequential Composition of two copies:

Step 1	$P(x) \xleftarrow{s}{}$	$V(x)$ $s \in_R \{0,1\}^{4n}$

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

• Single protocol:

Step
$$P(x)$$
 $V(x)$
1 $\stackrel{s}{\leftarrow} s \in_R \{0,1\}^{4n}$
2 if $s \in S_{4n} : c = K(x)$
else $c \in_R S_{4n}$ $\stackrel{c}{\rightarrow}$

2 Sequential Composition of two copies:

Step	P(x)		V(x)
1		$\stackrel{s}{\leftarrow}$	$s \in_R \{0,1\}^{4n}$
2	$c \in_R S_{4n}$	$\stackrel{c}{\rightarrow}$	

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

• Single protocol:

Step
$$P(x)$$
 $V(x)$
1 $\stackrel{s}{\leftarrow} s \in_R \{0,1\}^{4n}$
2 if $s \in S_{4n} : c = K(x)$
else $c \in_R S_{4n}$ $\stackrel{c}{\rightarrow}$

2 Sequential Composition of two copies:

Step	P(x)		V(x)
1		$\stackrel{s}{\leftarrow}$	$s \in_R \{0,1\}^{4n}$
2	$c \in_R S_{4n}$	$\stackrel{c}{\rightarrow}$	
1		$\stackrel{s}{\leftarrow}$	s = c

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

• Single protocol:

Step
$$P(x)$$
 $V(x)$
1 $\stackrel{s}{\leftarrow} s \in_R \{0,1\}^{4n}$
2 if $s \in S_{4n} : c = K(x)$
else $c \in_R S_{4n}$ $\stackrel{c}{\rightarrow}$

2 Sequential Composition of two copies:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V(x)		P(x)	Step
$\begin{array}{c c} 2 & c \in_R S_{4n} & \xrightarrow{c} \\ 1 & & \stackrel{s}{\leftarrow} & s = c \end{array}$	$1\}^{4n}$	$s \in_R \{0,1\}^{4n}$	$\stackrel{s}{\leftarrow}$		1
1 $s = s$			$\stackrel{c}{\rightarrow}$	$c \in_R S_{4n}$	2
	;	s = c	$\stackrel{s}{\leftarrow}$		1
$2 \text{ since } s \in S_{4n} : c = K(x) \stackrel{c}{\to} $			$\stackrel{c}{\rightarrow}$	since $s \in S_{4n}$: $c = K(x)$	2

Proof of V-Uniform Result

Definition (Efficient Evasive Pseudorandom Ensemble)

- S_1, S_2, \ldots
 - $S_m \subseteq \{0,1\}^m$
 - Machines with $\leq m/4$ bits of advice:
 - $S_m \stackrel{c}{\equiv} U_m$
 - hard to generate elements of S_m .
 - \exists an advice string π_m of length $\mathsf{poly}(m)$ s.t. efficient machines with this advice can:
 - Check membership
 - Generate uniformly random elements

Proof of V-Uniform Result

Definition (Efficient Evasive Pseudorandom Ensemble)

- S_1, S_2, \ldots
 - $S_m \subseteq \{0,1\}^m$
 - Machines with $\leq m/4$ bits of advice:
 - $S_m \stackrel{c}{\equiv} U_m$
 - hard to generate elements of S_m .
 - \exists an advice string π_m of length $\mathsf{poly}(m)$ s.t. efficient machines with this advice can:
 - Check membership
 - Generate uniformly random elements

Construction: pairwise independent family:

$$h_m \in_R \mathcal{H}_{m,k} = \{h_{m,k}(x) = ax + b|_k\}$$

A B F A B F

Proof of V-Uniform Result

Definition (Efficient Evasive Pseudorandom Ensemble)

- S_1, S_2, \ldots
 - $S_m \subseteq \{0,1\}^m$
 - Machines with $\leq m/4$ bits of advice:
 - $S_m \stackrel{c}{\equiv} U_m$
 - hard to generate elements of S_m .
 - \exists an advice string π_m of length $\mathsf{poly}(m)$ s.t. efficient machines with this advice can:
 - Check membership
 - Generate uniformly random elements

Construction: pairwise independent family:

$$h_m \in_R \mathcal{H}_{m,k} = \{h_{m,k}(x) = ax + b|_k\}$$

$$S_m = \{x \in \{0,1\}^m : h_m(x) = 0^k\}, \ \pi_m = (a,b).$$

Proof of V-Uniform Result

• Single protocol:

Step
$$\begin{array}{c|c} P(x, \pi_{4n}) & V(x) \\ 1 & \stackrel{s}{\leftarrow} & s \in_R \{0, 1\}^{4n} \\ 2 & \text{if } s \in S_{4n} : c = w \\ & \text{else } c \in_R S_{4n} & \stackrel{c}{\rightarrow} \end{array}$$

2 Sequential Composition of two copies:

Step	$P(x, \pi_{4n})$		V(x)
1		$\stackrel{s}{\leftarrow}$	$s \in_R \{0,1\}^{4n}$
2	$c \in_R S_{4n}$	$\stackrel{c}{\rightarrow}$	
1		$\stackrel{s}{\leftarrow}$	s = c
2	since $s \in S_{4n}$: $c = w$	$\stackrel{c}{\rightarrow}$	

Conclusions

Highlight impact of efficient provers

Eleanor Birrell, Salil Vadhan Composition of ZK Proofs with Efficient Provers

• • = • • = •

Conclusions

Highlight impact of efficient provers

Questions?

Eleanor Birrell, Salil Vadhan Composition of ZK Proofs with Efficient Provers

• • = • • = •