Composition of Zero-Knowledge Proofs with Efficient Provers

Eleanor Birrell Salil Vadhan
Cornell University Harvard University

February 11, 2010

Motivation

- Reducing Error

Motivation

- Reducing Error
- Networked Environments

Motivation

- Reducing Error
- Networked Environments
- Composibility is subtle - definitions matter (e.g., Efficient Provers)

Defining Zero Knowledge

$$
\begin{aligned}
& P(x, y) \\
& V^{*}(x, z)
\end{aligned}
$$

Auxiliary-input ZK

Defining Zero Knowledge

$$
P(x, y) \quad V^{*}(x)
$$

$\overline{D\left(t, z^{\prime}\right)}$
$\overline{=}$

Auxiliary-input ZK

Plain ZK [GMR]

- Nonuniform ZK: $D\left(t, z^{\prime}\right)$

Defining Zero Knowledge

$$
P(x, y) \quad V^{*}(x)
$$

$D(t, x, y)$

Auxiliary-input ZK

Plain ZK [GMR]

- Nonuniform ZK: $D\left(t, z^{\prime}\right)$
- P-uniform ZK: $D(t, x, y)$

Defining Zero Knowledge

$$
P(x, y) \quad V^{*}(x)
$$

Auxiliary-input ZK

Plain ZK [GMR]

- Nonuniform ZK: $D\left(t, z^{\prime}\right)$
- P-uniform ZK: $D(t, x, y)$
- V-uniform ZK: $D(t, x)$

Composition

- Sequential Composition:

- Parallel Composition:

Sequential Composition: Previous Results

- Goldreich-Krawczyk '90: Nonuniform Plain ZK is not 2-composable.

Sequential Composition: Previous Results

- Goldreich-Krawczyk '90: Nonuniform Plain ZK is not 2-composable.
- Goldreich-Oren '94: Auxiliary-input ZK is closed under polynomial composition.

Sequential Composition: Previous Results

Sequential Composition of Plain ZK:

	P-/Non-uniform ZK	V-Uniform ZK
Efficient Prover	$? ?$	$? ?$
Unbounded Prover	Not 2-comp [GK]	Not 2-comp [GK]

Efficient $=P$ poly-time given input x and witness y

Sequential Composition: Our Results

Sequential Composition of Plain ZK:

	P-/Non-uniform ZK	V-Uniform ZK
Efficient Prover	$O(1)$-comp	
Unbounded Prover	Not 2-comp [GK]	Not 2-comp [GK]

Efficient $=P$ poly-time given input x and witness y

Sequential Composition: Our Results

Sequential Composition of Plain ZK:

	P-/Non-uniform ZK	V-Uniform ZK
Efficient Prover	$O(1)$-comp	Not 2-comp
Unbounded Prover	Not 2-comp [GK]	Not 2-comp [GK]

Efficient $=P$ poly-time given input x and witness y

Parallel Composition: Previous Results

- Feige-Shamir '90: DL hard \Rightarrow Efficient-prover auxiliary-input ZK is not 2-composable in parallel.

Parallel Composition: Previous Results

- Feige-Shamir '90: DL hard \Rightarrow Efficient-prover auxiliary-input ZK is not 2-composable in parallel.
- Feige-Shamir '90: $\mathcal{U P} \nsubseteq \mathcal{B P P}$ and OWF \Rightarrow Efficient-prover auxiliary-input ZK is not 2-composable in parallel.

Parallel Composition: Previous Results

- Feige-Shamir '90: DL hard \Rightarrow Efficient-prover auxiliary-input ZK is not 2-composable in parallel.
- Feige-Shamir '90: $\mathcal{U P} \nsubseteq \mathcal{B} \mathcal{P} \mathcal{P}$ and OWF \Rightarrow Efficient-prover auxiliary-input ZK is not 2-composable in parallel.
- Goldriech-Krawczyk '90: Unbounded-prover auxiliary-input ZK is not 2-composable in parallel.

Parallel Composition: Previous Results

Parallel Composition of Auxiliary-input ZK:

	Auxiliary-input ZK
Efficient Prover	DL \Rightarrow not 2-comp [FS]
	$\mathcal{U P} \nsubseteq \mathcal{B P \mathcal { P }}+$ OWF \Rightarrow not 2-comp [FS]
Unbounded Prover	Not 2-comp [GK]

Parallel Composition: Our Results

Parallel Composition of Auxiliary-input ZK:

	Auxiliary-input ZK				
Efficient Prover	DL \Rightarrow not 2-comp [FS]				
	$\mathcal{U P} \nsubseteq \mathcal{B P P}+$ OWF \Rightarrow not 2-comp [FS]				
key agreement* \Rightarrow not 2-comp		$	$		Not 2-comp [GK]
:---	:---				
Unbounded Prover	Nom				

Nonuniform (resp. P-Uniform) Sequential Result

	P-/Non-uniform ZK	V-Uniform ZK
Efficient Prover	$O(1)$-comp	Not 2-comp
Unbounded Prover	Not 2-comp [GK]	Not 2-comp [GK]

Theorem

Efficient-prover P-uniform plain ZK is closed under $O(1)$-sequential composition.

Proof of Nonuniform (resp. P-Uniform) Result

V-Uniform Sequential Result

	P-/Non-uniform ZK	V-Uniform ZK
Efficient Prover	$O(1)$-comp	Not 2-comp
Unbounded Prover	Not 2-comp [GK]	Not 2-comp [GK]

Theorem

Efficient-prover V-uniform plain ZK is not 2-composable.

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

Definition (Evasive Pseudorandom Ensemble)

S_{1}, S_{2}, \ldots

- $S_{m} \subseteq\{0,1\}^{m}$
- $S_{m} \stackrel{c}{=} U_{m}$
- hard to generate elements of S_{m}.

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

(1) Single protocol:

Step	$P(x)$		$V(x)$
1		$s \in R$	$\{0,1\}^{4 n}$

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

(1) Single protocol:

Step	$P(x)$		$V(x)$				
1							
2					if $s \in S_{4 n}: c=K(x)$		
:---:	:---:	:---:					
else $c \in_{R} S_{4 n}$	$\stackrel{s}{\longleftrightarrow}$						

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

(1) Single protocol:

Step	$P(x)$		$V(x)$
1			
2	if $s \in S_{4 n}: c=K(x)$	$\stackrel{s}{\leftarrow}$	$s \in R\{0,1\}^{4 n}$
	else $c \in_{R} S_{4 n}$	\xrightarrow{c}	

(2) Sequential Composition of two copies:

Step	$P(x)$	$\stackrel{s}{\leftarrow}$	$s\left(x \in_{R}\{0,1\}^{4 n}\right.$
1			

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

(1) Single protocol:

Step	$P(x)$		$V(x)$
1			
2	if $s \in S_{4 n}: c=K(x)$	$\stackrel{s}{\leftarrow}$	$s \in R\{0,1\}^{4 n}$
	else $c \in_{R} S_{4 n}$	\xrightarrow{c}	

(2) Sequential Composition of two copies:

Step	$P(x)$	$\stackrel{s}{\leftarrow}$	$V(x)$
1		\xrightarrow{c}	
2	$c \in_{R} S_{4 n}\{0,1\}^{4 n}$		

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

(1) Single protocol:

Step	$P(x)$		$V(x)$
1			
2	if $s \in S_{4 n}: c=K(x)$	$\stackrel{s}{\leftarrow}$	$s \in R\{0,1\}^{4 n}$
	else $c \in_{R} S_{4 n}$	\xrightarrow{c}	

(2) Sequential Composition of two copies:

Step	$P(x)$	$\stackrel{s}{\leftarrow}$	$V(x)$
1		$\stackrel{c}{\hookrightarrow}$	
2	$c \in_{R} S_{4 n}\{0,1\}^{4 n}$		
1		$\stackrel{s}{\leftarrow}$	$s=c$

Overview of Goldreich-Krawczyk Construction (Unbounded Prover)

(1) Single protocol:

Step	$P(x)$		$V(x)$
1			
2	if $s \in S_{4 n}: c=K(x)$	$\stackrel{s}{\leftarrow}$	$s \in R\{0,1\}^{4 n}$
	else $c \in_{R} S_{4 n}$	\xrightarrow{c}	

(2) Sequential Composition of two copies:

Step	$P(x)$	$\stackrel{s}{\leftarrow}$	$V(x)$
1		$\stackrel{c}{c}\{0,1\}^{4 n}$	
2	$c \in_{R} S_{4 n}$	$\stackrel{s}{\leftarrow}$	$s=c$
1		$\stackrel{c}{\rightarrow}$	
2	since $s \in S_{4 n}: c=K(x)$		

Proof of V-Uniform Result

Definition (Efficient Evasive Pseudorandom Ensemble)

S_{1}, S_{2}, \ldots

- $S_{m} \subseteq\{0,1\}^{m}$
- Machines with $\leq m / 4$ bits of advice:
- $S_{m} \stackrel{c}{=} U_{m}$
- hard to generate elements of S_{m}.
- \exists an advice string π_{m} of length poly (m) s.t. efficient machines with this advice can:
- Check membership
- Generate uniformly random elements

Proof of V-Uniform Result

Definition (Efficient Evasive Pseudorandom Ensemble)

S_{1}, S_{2}, \ldots

- $S_{m} \subseteq\{0,1\}^{m}$
- Machines with $\leq m / 4$ bits of advice:
- $S_{m} \stackrel{c}{=} U_{m}$
- hard to generate elements of S_{m}.
- \exists an advice string π_{m} of length poly (m) s.t. efficient machines with this advice can:
- Check membership
- Generate uniformly random elements

Construction: pairwise independent family:

$$
h_{m} \in_{R} \mathcal{H}_{m, k}=\left\{h_{m, k}(x)=a x+\left.b\right|_{k}\right\}
$$

Proof of V-Uniform Result

Definition (Efficient Evasive Pseudorandom Ensemble)

S_{1}, S_{2}, \ldots

- $S_{m} \subseteq\{0,1\}^{m}$
- Machines with $\leq m / 4$ bits of advice:
- $S_{m} \stackrel{c}{=} U_{m}$
- hard to generate elements of S_{m}.
- \exists an advice string π_{m} of length poly (m) s.t. efficient machines with this advice can:
- Check membership
- Generate uniformly random elements

Construction: pairwise independent family:

$$
\begin{aligned}
& h_{m} \in_{R} \mathcal{H}_{m, k}=\left\{h_{m, k}(x)=a x+\left.b\right|_{k}\right\} \\
& S_{m}=\left\{x \in\{0,1\}^{m}: h_{m}(x)=0^{k}\right\}, \pi_{m}=(a, b) .
\end{aligned}
$$

Proof of V-Uniform Result

(1) Single protocol:

Step	$P\left(x, \pi_{4 n}\right)$	$\stackrel{s}{\leftarrow}$	 1
2	if $s \in \in_{R}\{0,1\}^{4 n}$		
else $c \in_{R} S_{4 n}$	\xrightarrow{c}		

(2) Sequential Composition of two copies:

Step	$P\left(x, \pi_{4 n}\right)$	$\stackrel{s}{\leftarrow}$	$V(x)$
1		$\stackrel{c}{\hookrightarrow}$	
2	$c \in_{R} S_{4 n}\{0,1\}^{4 n}$		
1		$\stackrel{s}{\leftarrow}$	$s=c$
2	since $s \in S_{4 n}: c=w$	$\stackrel{c}{\rightarrow}$	

Conclusions

Highlight impact of efficient provers

Conclusions

Highlight impact of efficient provers

Questions?

