
CS 51P December 4, 2019

Lecture 23: Object-Oriented Programming

Review: Types in Python

Primitive Types

• int
• float
• bool
• string

Objects

• tuple
• list
• dictionary
• Create your own…

x y

5

x = 5
y = 5

x = [5]
y = [5]

x

[5]

y

[5]>>> x == y
True
>>> x is y
True

>>> x == y
True
>>> x is y
False

Review: Classes
• Defining a type:

• how would you describe it? what distinguishes one object of this
type from another?

• what can an object of this type do?

• Example: Classroom type
• attributes: building, room number, capacity, accessible
• methods:

• find out building, room number, capacity
• change capacity

room1 = Classroom("Edmunds", "114", 40)
room2 = Classroom("Edmunds", "101", 30)
print(room2)
print(room2.get_capacity())
room2.set_capacity(50)
print(room2.get_capacity())

class Classroom:
def __init__(self, building, room, capacity):

self.building = building
self.room_number = room
self.capacity = capacity

def get_building(self):
return self.building

def get_room_number(self):
return self.room_number

def get_capacity(self):
return self.capacity

def set_capacity(self, capacity):
self.capacity = capacity

def __str__(self):
return(self.building + self.room_number +

", capacity " + self.capacity)

Review: Classes

Review: Creating and Using Objects

room = Classroom("Edmunds", "114", 40)
print(room)

print(room.get_capacity())
room.set_capacity(50)
print(room.get_capacity())

enough_space([room, Classroom("Edmunds", "101", 30")], 30)

default parameters

• Can use default parameters in functions

class Classroom:
def __init__(self, building, room, capacity, accessible=True):

self.building = building
self.room_number = room
self.capacity = capacity
self.accessible = accessible

mason22 = Classroom("mason", 22, 18, False)
edmunds114 = Classroom("edmunds", 114, 40)

class Thing:
def __init__(self):

self.a = 1
self.b = 4

def foo(self, param):
self.a = self.a + param
self.b = self.b + param
return (self.a + self.b)

def bar(self, param):
a = self.a + param
b = self.b + param
return (a + b)

def __str__(self):
return ('a is ' + str(self.a) +

', b is ' + str(self.b))
it = Thing()
print(it.foo(2))
print(it.bar(3))
print(it)

Programming as a way of thinking
• Decomposition

• what does a problem remind you of
• how can you reduce it to smaller, coherent pieces

• Testing
• how do you know if something works

• Debugging
• how to isolate where the problem is

• Communication
• how to explain what you did

Design
• Say you want to simulate the following:

• there are a group of people
• every person has a closet full of clothes
• they each choose clothes on any given day based on

the temperature and their personal cold/hot comfort
zone

• when they all see each other something happens
based on what each of them chose

Design
• Say you want to simulate the following:

• there are 2 people
• each person has a collection of 4 shirts: red, blue,

green, yellow
• every day for 5 days the two people randomly choose a

shirt to wear
• a special message is displayed on any day when both

people wear the same color shirt

---------- Day 1 ----------
Alice has a blue shirt
Bob has a green shirt
---------- Day 2 ----------
Alice has a red shirt
Bob has a blue shirt
---------- Day 3 ----------
Alice has a yellow shirt
Bob has a red shirt
---------- Day 4 ----------
Alice has a red shirt
Bob has a red shirt
Alice and Bob are wearing the same color shirt!
---------- Day 5 ----------
Alice has a red shirt
Bob has a blue shirt

Sample run

Defining a class:
what attributes does it have?
what can you do with it?

class Person:
SHIRT_COLORS = ("red", "green", "blue", "yellow")

def __init__(self, person_name, shirt_color = "blue"):
pass

def get_shirt_color(self):
pass

def get_name(self):
pass

def change_shirt(self):
pass

def __str__(self):
pass

Exercise

Abstraction
• abstraction is the idea of removing low-level details so

you can focus on more important things (like getting your
code working)
• fundamental concept in computer science

Exercise
• Assume you have a class Person with methods get_name,

get_shirt_color, and change_shirt. Implement a program that will
exhibit the following behavior:

---------- Day 1 ----------
Alice has a blue shirt
Bob has a green shirt
---------- Day 2 ----------
Alice has a red shirt
Bob has a blue shirt
---------- Day 3 ----------
Alice has a yellow shirt
Bob has a red shirt
---------- Day 4 ----------
Alice has a red shirt
Bob has a red shirt
Alice and Bob are wearing the same color shirt!
---------- Day 5 ----------
Alice has a red shirt
Bob has a blue shirt

