
CS 51P December 2, 2019

Lecture 22: Object-Oriented Programming

Types in Python

Primitive Types

• int
• float
• bool
• string

Objects

• tuple
• list
• dictionary
• Create your own…

x y

5

x = 5
y = 5

x = [5]
y = [5]

x

[5]

y

[5]>>> x == y
True
>>> x is y
True

>>> x == y
True
>>> x is y
False

class: programmer-defined type
• Defining a type:

• how would you describe it? what distinguishes one object of this
type from another?

• what can an object of this type do?

• Example: Classroom type
• attributes: building, room number, capacity, accessible
• methods:
• find out building, room number, capacity
• change capacity

room1 = Classroom("Edmunds", "114", 40)
room2 = Classroom("Edmunds", "101", 30)
print(room2)
print(room2.get_capacity())
room2.set_capacity(50)
print(room2.get_capacity())

Class Syntax
class Classroom:

method definitions go here

room1 = Classroom("Edmunds", "114", 40)
room2 = Classroom("Edmunds", "101", 30)
print(room2)
print(room2.get_capacity())
room2.set_capacity(50)
print(room2.get_capacity())

Special methods
• __init__

• constructor
• called when you create an object

• __str__
• called when you print an object

def __str__(self):
return(self.building + self.room_number

+ ", capacity " + str(self.capacity))

def __init__(self, building, room, capacity):
self.building = building
self.room_number = room
self.capacity = capacity

special methods have double underscores in name

self refers to this instance. all methods
have self as the first parameter.

self.variable_name refers to instance
attributes (i.e., variables)

all methods have self as the first parameter
even if they have no other parameters

class Classroom:
def __init__(self, building, room, capacity):

self.building = building
self.room_number = room
self.capacity = capacity

def __str__(self):
return(self.building + self.room_number +

", capacity " + str(self.capacity))

Example Class

room1 = Classroom("Edmunds", "114", 40)
room2 = Classroom("Edmunds", "101", 30)
print(room2)
print(room2.get_capacity())
room2.set_capacity(50)
print(room2.get_capacity())

class Classroom:
def __init__(self, building, room, capacity):

self.building = building
self.room_number = room
self.capacity = capacity

def __str__(self):
return(self.building + self.room_number +

", capacity " + str(self.capacity))

def get_building(self):
return self.building

def get_room_number(self):
return self.room_number

def get_capacity(self):
return self.capacity

def set_capacity(self, capacity):
self.capacity = capacity

Additional Methods

methods that modify the current
value in an attribute are called
setter or mutator methods

methods that return the current
value in an attribute are called
getter or accessor methods

Exercise
• What gets printed by the following code?

room1 = Classroom("Edmunds", "114", 40)
room2 = Classroom("Edmunds", "101", 30)
print(room1)
print(room1.get_capacity())
room1.set_capacity(50)
print(room1.get_capacity())

Exercise
Write a function enough_space that takes two
parameters: rooms (a list of Classrooms) and
num_people (int). The function should print the
classrooms that have capacity greater than or equal to
num_people.

Write a main function that creates a list of two classrooms
and then calls enough_space with that list

class Classroom:
def __init__(self, building, room, capacity):

self.building = building
self.room_number = room
self.capacity = capacity

def get_building(self):
return self.building

def get_room_number(self):
return self.room_number

def get_capacity(self):
return self.capacity

def set_capacity(self, capacity):
self.capacity = capacity

Exercise
• Modify the class Classroom to add a Boolean instance

variable that stores whether the classroom is accessible

default parameters

• Can use default parameters in functions

• Example: what is the default parameter in function input

class Classroom:
def __init__(self, building, room, capacity, accessible=True):

self.building = building
self.room_number = room
self.capacity = capacity
self.accessible = accessible

mason22 = Classroom("mason", 22, 18, False)
edmunds114 = Classroom("edmunds", 114, 40)

Exercise
• Define a class Rectangle with attributes width and height

and methods __init__, get_width, set_width, get_height,
set_height, and area

style

• Can use default parameters in functions

class Classroom:
'''
Class representing a classroom with a location, a capacity,
and whether it is accessible

[... as classes get more complex want to specify
instance attributes, methods ...]

'''

def __init__(self, building, room, cap, accessible=True):
'''
Create a new Classroom with given location, capacity, and

accessibility
param building (str): building name
param room (str): room number
param cap (int): capacity
param accessible (bool): if room is accessible (default True)
'''

